热门标签 | HotTags
当前位置:  开发笔记 > 运维 > 正文

Pig系统分析(2)

Pig哲学之一——PigsEatAnything。Pig能够从不同数据源加载数据,能够处理不同式的数据。Pig使用LoaderStore进行数据加载和存储,可选地使用Schema指定数据列名称和类型。如果加载数据时不指定Schema,数据列未命名,类型默认是字节数组(bytearray),在后

Pig哲学之一——Pigs Eat Anything。Pig能够从不同数据源加载数据,能够处理不同式的数据。Pig使用Loader/Store进行数据加载和存储,可选地使用Schema指定数据列名称和类型。如果加载数据时不指定Schema,数据列未命名,类型默认是字节数组(bytearray),在后

Pig哲学之一——Pigs Eat Anything。Pig能够从不同数据源加载数据,能够处理不同格式的数据。Pig使用Loader/Store进行数据加载和存储,可选地使用Schema指定数据列名称和类型。如果加载数据时不指定Schema,数据列未命名,类型默认是字节数组(bytearray),在后续操作中,Pig可以通过位置参数引用数据列,会根据在数据列上进行的操作进行自动类型转化。从性能和可读性考虑,最好在加载数据时指定Schema。

Loader体系

Loader的基类是org.apache.pig.LoadFunc,规定了Loader需要实现的接口,并提供了一些默认实现。下图是Loader的继承体系,针对不同数据源,Pig实现了大量Loader,包括HBaseStorage和ParquestLoader等,能够处理列式存储。默认的Loader是PigStorage。

org.apache.pig.LoadFunc中的三个基本的方法决定了Where/What/How:

public abstractvoidsetLocation(String location, Job job) throws IOException
public abstractInputFormat getInputFormat() throws IOException
public LoadCaster getLoadCaster() throws IOException {
            return new Utf8StorageConverter();
}
  1. 指定加载位置。
  2. 指定数据源类型,使用HDFS的InputFormat处理不同数据源。
  3. 如何处理数据从字节数组到实际类型的转化,默认使用Utf8StorageConverter
PigStore分析

1) 处理压缩格式,通过加载文件后缀加载不同的InputFormat:

@Override
public InputFormat getInputFormat() {
    if(loadLocation.endsWith(".bz2") || loadLocation.endsWith(".bz")) {
        return newBzip2TextInputFormat();
    } else {
        return newPigTextInputFormat();
    }
}
2) 读取数据:读取数据之前先代用prepareToRead方法设置InputFormat对应的RecordReader,通过RecordReader读取每行数据,根据用户指定的分隔符处理每行文本,最终转换成元组。
public void prepareToRead(RecordReader reader,PigSplit split)
@Override
public Tuple getNext() throws IOException

3) Schema处理,在getNext方法中,如果存在Schema,会对元组应用applySchema方法,给元组中的数据项指定名称和类型。 其他重要接口

通过实现其他一些接口,Loader能提供一些附加功能

LoadMetaData

  1. 通过getSchema方法自动加载Schema
  2. 通过getPartitionKeys方法设置数据的分区键,把用户查询条件中的分区键通过setPartitionFilter直接传递给Loader,减少数据加载。参见HCatLoader中实现,注:org.apache.hcatalog.pig.HCatLoader

LoadPushDown

在使用RCFile等基于列格式文件时,如果每次都加载所有列对性能影响较大。如果实现了LoadPushDown接口,优化器会将所需要用到的字段传递给pushProjection方法。

LoadCaster

自定义字节数组到Schema中数据类型的转换,通过一系列方法能够自定义字节数组到到Pig的标量和复杂数据类型的转化。默认实现为Utf8StorageConverter,其中的复杂数据类型格式固定,比如元组格式为(),map格式为[],bag为{}。

Store体系

与org.apache.pig.LoadFunc对应,Pig中也存在org.apache.pig.StoreFunc抽象类。由于不少Loader(比如默认的PigStorage)同样实现了store功能,受Java单继承的限制,Pig提供了StoreFuncInterface接口。

Store的实现与Loader对应,将实际输出操作委托给OutputFormat。值得注意的是,与LoadMetadata对应,Pig也提供了StoreMetadata接口用于处理元数据的存储。.

Schema结构

Schema描述了一个数据集合每一行的列名称和数据类型,其中每一个列信息用FieldSchema表示。FieldSchema通常包括列名称、数据类型,如果列本身是bag的话,FieldSchema还会拥有自己的Schema。


参考价值
  1. 目前Pig针对逻辑执行计划的优化器都是基于规则的,如果要实现基于代价的优化,需要更多关于数据的统计信息,那么加载和存储数据应该是重要入口和出口。在LoadMetadata/StoreMetadata接口中已经存在getStatistics/setStatistics方法,ResourceStatistics包含行数、行大小、列直方图、区分度等统计信息,不过现在在PigStorage中是空实现。
  2. 如果要实现Pig On Spark,Loader体系中需要加入RDD层,演变为Loader-RDD-HDFS三层结构。HDFS存储可以考虑ORCFile等列式存储格式,基于成本的优化可以参考Hive中的实现

推荐阅读
  • 本文探讨了Hive中内部表和外部表的区别及其在HDFS上的路径映射,详细解释了两者的创建、加载及删除操作,并提供了查看表详细信息的方法。通过对比这两种表类型,帮助读者理解如何更好地管理和保护数据。 ... [详细]
  • 本文详细分析了Hive在启动过程中遇到的权限拒绝错误,并提供了多种解决方案,包括调整文件权限、用户组设置以及环境变量配置等。 ... [详细]
  • Hadoop入门与核心组件详解
    本文详细介绍了Hadoop的基础知识及其核心组件,包括HDFS、MapReduce和YARN。通过本文,读者可以全面了解Hadoop的生态系统及应用场景。 ... [详细]
  • 本文详细介绍了 Flink 和 YARN 的交互机制。YARN 是 Hadoop 生态系统中的资源管理组件,类似于 Spark on YARN 的配置方式。我们将基于官方文档,深入探讨如何在 YARN 上部署和运行 Flink 任务。 ... [详细]
  • Hadoop发行版本选择指南:技术解析与应用实践
    本文详细介绍了Hadoop的不同发行版本及其特点,帮助读者根据实际需求选择最合适的Hadoop版本。内容涵盖Apache Hadoop、Cloudera CDH等主流版本的特性及应用场景。 ... [详细]
  • 离线安装Grafana Cloudera Manager插件并监控CDH集群
    本文详细介绍如何离线安装Cloudera Manager (CM) 插件,并通过Grafana监控CDH集群的健康状况和资源使用情况。该插件利用CM提供的API接口进行数据获取和展示。 ... [详细]
  • 本文详细介绍如何使用 Apache Spark 执行基本任务,包括启动 Spark Shell、运行示例程序以及编写简单的 WordCount 程序。同时提供了参数配置的注意事项和优化建议。 ... [详细]
  • 深入解析Hadoop的核心组件与工作原理
    本文详细介绍了Hadoop的三大核心组件:分布式文件系统HDFS、资源管理器YARN和分布式计算框架MapReduce。通过分析这些组件的工作机制,帮助读者更好地理解Hadoop的架构及其在大数据处理中的应用。 ... [详细]
  • 本文详细探讨了如何在 SparkSQL 中创建 DataFrame,涵盖了从基本概念到具体实践的各种方法。作为持续学习的一部分,本文将持续更新以提供最新信息。 ... [详细]
  • HBase运维工具全解析
    本文深入探讨了HBase常用的运维工具,详细介绍了每种工具的功能、使用场景及操作示例。对于HBase的开发人员和运维工程师来说,这些工具是日常管理和故障排查的重要手段。 ... [详细]
  • 本文详细介绍了 Java 中的 org.apache.hadoop.registry.client.impl.zk.ZKPathDumper 类,提供了丰富的代码示例和使用指南。通过这些示例,读者可以更好地理解如何在实际项目中利用 ZKPathDumper 类进行注册表树的转储操作。 ... [详细]
  • 本文探讨了Hive作业中Map任务数量的确定方式,主要涉及HiveInputFormat和CombineHiveInputFormat两种InputFormat的分片计算逻辑。通过调整相关参数,可以有效控制Map任务的数量,进而优化Hive作业的性能。 ... [详细]
  • 深入解析BookKeeper的设计与应用场景
    本文介绍了由Yahoo在2009年开发并于2011年开源的BookKeeper技术。BookKeeper是一种高效且可靠的日志流存储解决方案,广泛应用于需要高性能和强数据持久性的场景。 ... [详细]
  • Flex 截图 实例 ... [详细]
  • 本文介绍了Hive作为基于Hadoop的数据仓库工具的核心概念,包括其基本功能、使用理由、特点以及与Hadoop的关系。同时,文章还探讨了Hive相较于传统关系型数据库的不同之处,并展望了Hive的发展前景。 ... [详细]
author-avatar
mobiledu2502939937
这个家伙很懒,什么也没留下!
PHP1.CN | 中国最专业的PHP中文社区 | DevBox开发工具箱 | json解析格式化 |PHP资讯 | PHP教程 | 数据库技术 | 服务器技术 | 前端开发技术 | PHP框架 | 开发工具 | 在线工具
Copyright © 1998 - 2020 PHP1.CN. All Rights Reserved | 京公网安备 11010802041100号 | 京ICP备19059560号-4 | PHP1.CN 第一PHP社区 版权所有