热门标签 | HotTags
当前位置:  开发笔记 > 编程语言 > 正文

Python迭代器工具包【推荐】

迭代器工具在产生数据的时候将会显得非常便捷、高效,掌握了这些基本的方法之后,通过简单的组合就可以获得更多迭代器工具。
  原文:https://git.io/pytips

  0x01 介绍了迭代器的概念,即定义了 __iter__() __next__() 方法的对象,或者通过 yield 简化定义的“可迭代对象”,而在一些函数式编程语言(见 0x02 Python 中的函数式编程)中,类似的迭代器常被用于产生特定格式的列表(或序列),这时的迭代器更像是一种数据结构而非函数(当然在一些函数式编程语言中,这两者并无本质差异)。Python 借鉴了 APL, Haskell, and SML 中的某些迭代器的构造方法,并在 itertools 中实现(该模块是通过 C 实现,源代码:/Modules/itertoolsmodule.c)。

  itertools 模块提供了如下三类迭代器构建工具:

  无限迭代

  整合两序列迭代

  组合生成器

  1. 无限迭代

  所谓无限(infinite)是指如果你通过 for...in... 的语法对其进行迭代,将陷入无限循环,包括:

  

count(start, [step])

  cycle(p)

  repeat(elem [,n])

  从名字大概可以猜出它们的用法,既然说是无限迭代,我们自然不会想要将其所有元素依次迭代取出,而通常是结合 map/zip 等方法,将其作为一个取之不尽的数据仓库,与有限长度的可迭代对象进行组合操作:

  

from itertools import cycle, count, repeat
print(count.__doc__)
  count(start=0, step=1) --> count object
  Return a count object whose .__next__() method returns consecutive values.
  Equivalent to:
  def count(firstval=0, step=1):
  x = firstval
  while 1:
  yield x
  x += step
  counter = count()
  print(next(counter))
  print(next(counter))
  print(list(map(lambda x, y: x+y, range(10), counter)))
  odd_counter = map(lambda x: 'Odd#{}'.format(x), count(1, 2))
  print(next(odd_counter))
  print(next(odd_counter))

  0

  1

  [2, 4, 6, 8, 10, 12, 14, 16, 18, 20]

  Odd#1

  Odd#3

  print(cycle.__doc__)

  cycle(iterable) --> cycle object

  Return elements from the iterable until it is exhausted.

  Then repeat the sequence indefinitely.

  cyc = cycle(range(5))

  print(list(zip(range(6), cyc)))

  print(next(cyc))

  print(next(cyc))

  [(0, 0), (1, 1), (2, 2), (3, 3), (4, 4), (5, 0)]

  1

  2

  print(repeat.__doc__)

  repeat(object [,times]) -> create an iterator which returns the object

  for the specified number of times. If not specified, returns the object

  endlessly.

  print(list(repeat('Py', 3)))

  rep = repeat('p')

  print(list(zip(rep, 'y'*3)))

  ['Py', 'Py', 'Py']

  [('p', 'y'), ('p', 'y'), ('p', 'y')]

  2. 整合两序列迭代

  所谓整合两序列,是指以两个有限序列为输入,将其整合操作之后返回为一个迭代器,最为常见的 zip 函数就属于这一类别,只不过 zip 是内置函数。这一类别完整的方法包括:

 

 accumulate()

  chain()/chain.from_iterable()

  compress()

  dropwhile()/filterfalse()/takewhile()

  groupby()

  islice()

  starmap()

  tee()

  zip_longest()

  这里就不对所有的方法一一举例说明了,如果想要知道某个方法的用法,基本通过 print(method.__doc__) 就可以了解,毕竟 itertools 模块只是提供了一种快捷方式,并没有隐含什么深奥的算法。这里只对下面几个我觉得比较有趣的方法进行举例说明。

  

from itertools import cycle, compress, islice, takewhile, count

  # 这三个方法(如果使用恰当)可以限定无限迭代

  # print(compress.__doc__)

  print(list(compress(cycle('PY'), [1, 0, 1, 0])))

  # 像操作列表 l[start:stop:step] 一样操作其它序列

  # print(islice.__doc__)

  print(list(islice(cycle('PY'), 0, 2)))

  # 限制版的 filter

  # print(takewhile.__doc__)

  print(list(takewhile(lambda x: x <5, count())))

  ['P', 'P']

  ['P', 'Y']

  [0, 1, 2, 3, 4]

  from itertools import groupby

  from operator import itemgetter

  print(groupby.__doc__)

  for k, g in groupby('AABBC'):

  print(k, list(g))

  db = [dict(name='python', script=True),

  dict(name='c', script=False),

  dict(name='c++', script=False),

  dict(name='ruby', script=True)]

  keyfunc = itemgetter('script')

  db2 = sorted(db, key=keyfunc) # sorted by `script'

  for isScript, langs in groupby(db2, keyfunc):

  print(', '.join(map(itemgetter('name'), langs)))

  groupby(iterable[, keyfunc]) -> create an iterator which returns

  (key, sub-iterator) grouped by each value of key(value).

  A ['A', 'A']

  B ['B', 'B']

  C ['C']

  c, c++

  python, ruby

  from itertools import zip_longest

  # 内置函数 zip 以较短序列为基准进行合并,

  # zip_longest 则以最长序列为基准,并提供补足参数 fillvalue

  # Python 2.7 中名为 izip_longest

  print(list(zip_longest('ABCD', '123', fillvalue=0)))

  [('A', '1'), ('B', '2'), ('C', '3'), ('D', 0)]

  3. 组合生成器

  关于生成器的排列组合: 

product(*iterables, repeat=1):两输入序列的笛卡尔乘积

  permutations(iterable, r=None):对输入序列的完全排列组合

  combinations(iterable, r):有序版的排列组合

  combinations_with_replacement(iterable, r):有序版的笛卡尔乘积

  from itertools import product, permutations, combinations, combinations_with_replacement

  print(list(product(range(2), range(2))))

  print(list(product('AB', repeat=2)))

  [(0, 0), (0, 1), (1, 0), (1, 1)]

  [('A', 'A'), ('A', 'B'), ('B', 'A'), ('B', 'B')]

  print(list(combinations_with_replacement('AB', 2)))

  [('A', 'A'), ('A', 'B'), ('B', 'B')]

  # 赛马问题:4匹马前2名的排列组合(A^4_2)

  print(list(permutations('ABCDE', 2)))

  [('A', 'B'), ('A', 'C'), ('A', 'D'), 
 ('A', 'E'), ('B', 'A'), ('B', 'C'), 
 ('B', 'D'), ('B', 'E'), ('C', 'A'), 
 ('C', 'B'), ('C', 'D'), ('C', 'E'), 
 ('D', 'A'), ('D', 'B'), ('D', 'C'), 
 ('D', 'E'), ('E', 'A'), ('E', 'B'), ('E', 'C'), ('E', 'D')]

  # 彩球问题:4种颜色的球任意抽出2个的颜色组合(C^4_2)

  print(list(combinations('ABCD', 2)))

  [('A', 'B'), ('A', 'C'), ('A', 'D'), ('B', 'C'), ('B', 'D'), ('C', 'D')]

推荐阅读
  • 探讨一个显示数字的故障计算器,它支持两种操作:将当前数字乘以2或减去1。本文将详细介绍如何用最少的操作次数将初始值X转换为目标值Y。 ... [详细]
  • 本文探讨了如何在给定整数N的情况下,找到两个不同的整数a和b,使得它们的和最大,并且满足特定的数学条件。 ... [详细]
  • 自学编程与计算机专业背景者的差异分析
    本文探讨了自学编程者和计算机专业毕业生在技能、知识结构及职业发展上的不同之处,结合实际案例分析两者的优势与劣势。 ... [详细]
  • CentOS7源码编译安装MySQL5.6
    2019独角兽企业重金招聘Python工程师标准一、先在cmake官网下个最新的cmake源码包cmake官网:https:www.cmake.org如此时最新 ... [详细]
  • 如何在PHPcms网站中添加广告
    本文详细介绍了在PHPcms网站后台添加广告的方法,涵盖多种常见的广告形式,如百度广告和Google广告,并提供了相关设置的步骤。同时,文章还探讨了优化网站流量的SEO策略。 ... [详细]
  • 本文详细介绍了如何使用Python编写爬虫程序,从豆瓣电影Top250页面抓取电影信息。文章涵盖了从基础的网页请求到处理反爬虫机制,再到多页数据抓取的全过程,并提供了完整的代码示例。 ... [详细]
  • 本文介绍如何使用 Sortable.js 库实现元素的拖拽和位置交换功能。Sortable.js 是一个轻量级、无依赖的 JavaScript 库,支持拖拽排序、动画效果和多种插件扩展。通过简单的配置和事件处理,可以轻松实现复杂的功能。 ... [详细]
  • 本文详细介绍了Java编程语言中的核心概念和常见面试问题,包括集合类、数据结构、线程处理、Java虚拟机(JVM)、HTTP协议以及Git操作等方面的内容。通过深入分析每个主题,帮助读者更好地理解Java的关键特性和最佳实践。 ... [详细]
  • 扫描线三巨头 hdu1928hdu 1255  hdu 1542 [POJ 1151]
    学习链接:http:blog.csdn.netlwt36articledetails48908031学习扫描线主要学习的是一种扫描的思想,后期可以求解很 ... [详细]
  • 本文详细介绍了如何在 Spring Boot 应用中通过 @PropertySource 注解读取非默认配置文件,包括配置文件的创建、映射类的设计以及确保 Spring 容器能够正确加载这些配置的方法。 ... [详细]
  • This document outlines the recommended naming conventions for HTML attributes in Fast Components, focusing on readability and consistency with existing standards. ... [详细]
  • 本文深入探讨了 Python 列表切片的基本概念和实际应用,通过具体示例展示了不同切片方式的使用方法及其背后的逻辑。 ... [详细]
  • 在现代网络环境中,两台计算机之间的文件传输需求日益增长。传统的FTP和SSH方式虽然有效,但其配置复杂、步骤繁琐,难以满足快速且安全的传输需求。本文将介绍一种基于Go语言开发的新一代文件传输工具——Croc,它不仅简化了操作流程,还提供了强大的加密和跨平台支持。 ... [详细]
  • 解决微信电脑版无法刷朋友圈问题:使用安卓远程投屏方案
    在工作期间想要浏览微信和朋友圈却不太方便?虽然微信电脑版目前不支持直接刷朋友圈,但通过远程投屏技术,可以轻松实现在电脑上操作安卓设备的功能。 ... [详细]
  • 使用Python在SAE上开发新浪微博应用的初步探索
    最近重新审视了新浪云平台(SAE)提供的服务,发现其已支持Python开发。本文将详细介绍如何利用Django框架构建一个简单的新浪微博应用,并分享开发过程中的关键步骤。 ... [详细]
author-avatar
vbppn65853
这个家伙很懒,什么也没留下!
PHP1.CN | 中国最专业的PHP中文社区 | DevBox开发工具箱 | json解析格式化 |PHP资讯 | PHP教程 | 数据库技术 | 服务器技术 | 前端开发技术 | PHP框架 | 开发工具 | 在线工具
Copyright © 1998 - 2020 PHP1.CN. All Rights Reserved | 京公网安备 11010802041100号 | 京ICP备19059560号-4 | PHP1.CN 第一PHP社区 版权所有