热门标签 | HotTags
当前位置:  开发笔记 > 编程语言 > 正文

Python迭代器工具包【推荐】

迭代器工具在产生数据的时候将会显得非常便捷、高效,掌握了这些基本的方法之后,通过简单的组合就可以获得更多迭代器工具。
  原文:https://git.io/pytips

  0x01 介绍了迭代器的概念,即定义了 __iter__() __next__() 方法的对象,或者通过 yield 简化定义的“可迭代对象”,而在一些函数式编程语言(见 0x02 Python 中的函数式编程)中,类似的迭代器常被用于产生特定格式的列表(或序列),这时的迭代器更像是一种数据结构而非函数(当然在一些函数式编程语言中,这两者并无本质差异)。Python 借鉴了 APL, Haskell, and SML 中的某些迭代器的构造方法,并在 itertools 中实现(该模块是通过 C 实现,源代码:/Modules/itertoolsmodule.c)。

  itertools 模块提供了如下三类迭代器构建工具:

  无限迭代

  整合两序列迭代

  组合生成器

  1. 无限迭代

  所谓无限(infinite)是指如果你通过 for...in... 的语法对其进行迭代,将陷入无限循环,包括:

  

count(start, [step])

  cycle(p)

  repeat(elem [,n])

  从名字大概可以猜出它们的用法,既然说是无限迭代,我们自然不会想要将其所有元素依次迭代取出,而通常是结合 map/zip 等方法,将其作为一个取之不尽的数据仓库,与有限长度的可迭代对象进行组合操作:

  

from itertools import cycle, count, repeat
print(count.__doc__)
  count(start=0, step=1) --> count object
  Return a count object whose .__next__() method returns consecutive values.
  Equivalent to:
  def count(firstval=0, step=1):
  x = firstval
  while 1:
  yield x
  x += step
  counter = count()
  print(next(counter))
  print(next(counter))
  print(list(map(lambda x, y: x+y, range(10), counter)))
  odd_counter = map(lambda x: 'Odd#{}'.format(x), count(1, 2))
  print(next(odd_counter))
  print(next(odd_counter))

  0

  1

  [2, 4, 6, 8, 10, 12, 14, 16, 18, 20]

  Odd#1

  Odd#3

  print(cycle.__doc__)

  cycle(iterable) --> cycle object

  Return elements from the iterable until it is exhausted.

  Then repeat the sequence indefinitely.

  cyc = cycle(range(5))

  print(list(zip(range(6), cyc)))

  print(next(cyc))

  print(next(cyc))

  [(0, 0), (1, 1), (2, 2), (3, 3), (4, 4), (5, 0)]

  1

  2

  print(repeat.__doc__)

  repeat(object [,times]) -> create an iterator which returns the object

  for the specified number of times. If not specified, returns the object

  endlessly.

  print(list(repeat('Py', 3)))

  rep = repeat('p')

  print(list(zip(rep, 'y'*3)))

  ['Py', 'Py', 'Py']

  [('p', 'y'), ('p', 'y'), ('p', 'y')]

  2. 整合两序列迭代

  所谓整合两序列,是指以两个有限序列为输入,将其整合操作之后返回为一个迭代器,最为常见的 zip 函数就属于这一类别,只不过 zip 是内置函数。这一类别完整的方法包括:

 

 accumulate()

  chain()/chain.from_iterable()

  compress()

  dropwhile()/filterfalse()/takewhile()

  groupby()

  islice()

  starmap()

  tee()

  zip_longest()

  这里就不对所有的方法一一举例说明了,如果想要知道某个方法的用法,基本通过 print(method.__doc__) 就可以了解,毕竟 itertools 模块只是提供了一种快捷方式,并没有隐含什么深奥的算法。这里只对下面几个我觉得比较有趣的方法进行举例说明。

  

from itertools import cycle, compress, islice, takewhile, count

  # 这三个方法(如果使用恰当)可以限定无限迭代

  # print(compress.__doc__)

  print(list(compress(cycle('PY'), [1, 0, 1, 0])))

  # 像操作列表 l[start:stop:step] 一样操作其它序列

  # print(islice.__doc__)

  print(list(islice(cycle('PY'), 0, 2)))

  # 限制版的 filter

  # print(takewhile.__doc__)

  print(list(takewhile(lambda x: x <5, count())))

  ['P', 'P']

  ['P', 'Y']

  [0, 1, 2, 3, 4]

  from itertools import groupby

  from operator import itemgetter

  print(groupby.__doc__)

  for k, g in groupby('AABBC'):

  print(k, list(g))

  db = [dict(name='python', script=True),

  dict(name='c', script=False),

  dict(name='c++', script=False),

  dict(name='ruby', script=True)]

  keyfunc = itemgetter('script')

  db2 = sorted(db, key=keyfunc) # sorted by `script'

  for isScript, langs in groupby(db2, keyfunc):

  print(', '.join(map(itemgetter('name'), langs)))

  groupby(iterable[, keyfunc]) -> create an iterator which returns

  (key, sub-iterator) grouped by each value of key(value).

  A ['A', 'A']

  B ['B', 'B']

  C ['C']

  c, c++

  python, ruby

  from itertools import zip_longest

  # 内置函数 zip 以较短序列为基准进行合并,

  # zip_longest 则以最长序列为基准,并提供补足参数 fillvalue

  # Python 2.7 中名为 izip_longest

  print(list(zip_longest('ABCD', '123', fillvalue=0)))

  [('A', '1'), ('B', '2'), ('C', '3'), ('D', 0)]

  3. 组合生成器

  关于生成器的排列组合: 

product(*iterables, repeat=1):两输入序列的笛卡尔乘积

  permutations(iterable, r=None):对输入序列的完全排列组合

  combinations(iterable, r):有序版的排列组合

  combinations_with_replacement(iterable, r):有序版的笛卡尔乘积

  from itertools import product, permutations, combinations, combinations_with_replacement

  print(list(product(range(2), range(2))))

  print(list(product('AB', repeat=2)))

  [(0, 0), (0, 1), (1, 0), (1, 1)]

  [('A', 'A'), ('A', 'B'), ('B', 'A'), ('B', 'B')]

  print(list(combinations_with_replacement('AB', 2)))

  [('A', 'A'), ('A', 'B'), ('B', 'B')]

  # 赛马问题:4匹马前2名的排列组合(A^4_2)

  print(list(permutations('ABCDE', 2)))

  [('A', 'B'), ('A', 'C'), ('A', 'D'), 
 ('A', 'E'), ('B', 'A'), ('B', 'C'), 
 ('B', 'D'), ('B', 'E'), ('C', 'A'), 
 ('C', 'B'), ('C', 'D'), ('C', 'E'), 
 ('D', 'A'), ('D', 'B'), ('D', 'C'), 
 ('D', 'E'), ('E', 'A'), ('E', 'B'), ('E', 'C'), ('E', 'D')]

  # 彩球问题:4种颜色的球任意抽出2个的颜色组合(C^4_2)

  print(list(combinations('ABCD', 2)))

  [('A', 'B'), ('A', 'C'), ('A', 'D'), ('B', 'C'), ('B', 'D'), ('C', 'D')]

推荐阅读
  • 本文将详细介绍如何配置并整合MVP架构、Retrofit网络请求库、Dagger2依赖注入框架以及RxAndroid响应式编程库,构建高效、模块化的Android应用。 ... [详细]
  • 使用R语言进行Foodmart数据的关联规则分析与可视化
    本文探讨了如何利用R语言中的arules和arulesViz包对Foodmart数据集进行关联规则的挖掘与可视化。文章首先介绍了数据集的基本情况,然后逐步展示了如何进行数据预处理、规则挖掘及结果的图形化呈现。 ... [详细]
  • 探索将Python Spyder与GitHub连接的方法,了解当前的技术状态及未来可能的发展方向。 ... [详细]
  • 本文档提供了在Windows 10操作系统中安装Python 3及Scrapy框架的完整指南,包括必要的依赖库如wheel、lxml、pyOpenSSL、Twisted和pywin32的安装方法。 ... [详细]
  • 2023年1月28日网络安全热点
    涵盖最新的网络安全动态,包括OpenSSH和WordPress的安全更新、VirtualBox提权漏洞、以及谷歌推出的新证书验证机制等内容。 ... [详细]
  • 本文旨在探讨Swift中的Closure与Objective-C中的Block之间的区别与联系,通过定义、使用方式以及外部变量捕获等方面的比较,帮助开发者更好地理解这两种机制的特点及应用场景。 ... [详细]
  • 本文介绍了使用Python和C语言编写程序来计算一个给定数值的平方根的方法。通过迭代算法,我们能够精确地得到所需的结果。 ... [详细]
  • 深入理解iOS中的链式编程:以Masonry为例
    本文通过介绍Masonry这一轻量级布局框架,探讨链式编程在iOS开发中的应用。Masonry不仅简化了Auto Layout的使用,还提高了代码的可读性和维护性。 ... [详细]
  • Git版本控制基础解析
    本文探讨了Git作为版本控制工具的基本概念及其重要性,不仅限于代码管理,还包括文件的历史记录与版本切换功能。通过对比Git与SVN,进一步阐述了分布式版本控制系统的独特优势。 ... [详细]
  • 本文探讨了在AspNetForums平台中实施基于角色的权限控制系统的方法,旨在为不同级别的用户提供合适的访问权限,确保系统的安全性和可用性。 ... [详细]
  • Excel技巧:单元格中显示公式而非结果的解决方法
    本文探讨了在Excel中如何通过简单的方法解决单元格显示公式而非计算结果的问题,包括使用快捷键和调整单元格格式两种方法。 ... [详细]
  • 本文介绍了如何使用 Python 的 Pyglet 库加载并显示图像。Pyglet 是一个用于开发图形用户界面应用的强大工具,特别适用于游戏和多媒体项目。 ... [详细]
  • 汇总了2023年7月7日最新的网络安全新闻和技术更新,包括最新的漏洞披露、工具发布及安全事件。 ... [详细]
  • 本文分享了作者在使用LaTeX过程中的几点心得,涵盖了从文档编辑、代码高亮、图形绘制到3D模型展示等多个方面的内容。适合希望深入了解LaTeX高级功能的用户。 ... [详细]
  • 本文提供了一个详尽的前端开发资源列表,涵盖了从基础入门到高级应用的各个方面,包括HTML5、CSS3、JavaScript框架及库、移动开发、API接口、工具与插件等。 ... [详细]
author-avatar
vbppn65853
这个家伙很懒,什么也没留下!
PHP1.CN | 中国最专业的PHP中文社区 | DevBox开发工具箱 | json解析格式化 |PHP资讯 | PHP教程 | 数据库技术 | 服务器技术 | 前端开发技术 | PHP框架 | 开发工具 | 在线工具
Copyright © 1998 - 2020 PHP1.CN. All Rights Reserved | 京公网安备 11010802041100号 | 京ICP备19059560号-4 | PHP1.CN 第一PHP社区 版权所有