热门标签 | HotTags
当前位置:  开发笔记 > 开放平台 > 正文

php数组的一些常见操作汇总

数组是最基本的数据结构,关于数组的操作是程序员最经常用到的。这里将一些常用的操作写成函数。
数组求和
给定一个含有n个元素的整型数组a,求a中所有元素的和。可能您会觉得很简单,是的,的确简单,但是为什么还要说呢,原因有二,第一,这道题要求用递归法,只用一行代码。第二,这是我人生中第一次面试时候遇到的题,意义特殊。

简单说一下,两种情况:

如果数组元素个数为0,那么和为0。
如果数组元素个数为n,那么先求出前n - 1个元素之和,再加上a[n - 1]即可。

代码如下:


// 数组求和
int sum(int *a, int n)
{
return n == 0 ? 0 : sum(a, n - 1) + a[n - 1];
}


求数组的最大值和最小值
给定一个含有n个元素的整型数组a,找出其中的最大值和最小值。

常规的做法是遍历一次,分别求出最大值和最小值,但我这里要说的是分治法(Divide and couquer),将数组分成左右两部分,先求出左半部份的最大值和最小值,再求出右半部份的最大值和最小值,然后综合起来求总体的最大值及最小值。这是个递归过程,对于划分后的左右两部分,同样重复这个过程,直到划分区间内只剩一个元素或者两个元素。

代码如下:


// 求数组的最大值和最小值,返回值在maxValue和minValue
void MaxandMin(int *a, int l, int r, int& maxValue, int& minValue)
{
if(l == r) // l与r之间只有一个元素
{
maxValue = a[l] ;
minValue = a[l] ;
return ;
}

if(l + 1 == r) // l与r之间只有两个元素
{
if(a[l] >= a[r])
{
maxValue = a[l] ;
minValue = a[r] ;
}
else
{
maxValue = a[r] ;
minValue = a[l] ;
}
return ;
}

int m = (l + r) / 2 ; // 求中点

int lmax ; // 左半部份最大值
int lmin ; // 左半部份最小值
MaxandMin(a, l, m, lmax, lmin) ; // 递归计算左半部份

int rmax ; // 右半部份最大值
int rmin ; // 右半部份最小值
MaxandMin(a, m + 1, r, rmax, rmin) ; // 递归计算右半部份

maxValue = max(lmax, rmax) ; // 总的最大值
minValue = min(lmin, rmin) ; // 总的最小值
}


求数组的最大值和次大值
给定一个含有n个元素的整型数组,求其最大值和次大值。

思想和上一题类似,同样是用分治法,不多说了,直接看代码:

代码如下:


// 求数组的最大值和次大值,返回值在max和second中
void MaxandMin(int *a, int left, int right, int &max, int &second)
{
if(left == right)
{
max = a[left] ;
secOnd= a[left] ;
}
else if(left + 1 == right)
{
max = a[left] > a[right] ? a[left] : a[right] ;
secOnd= a[left] }
else
{
int mid = left + (right - left) / 2 ;

int leftmax ;
int leftmin ;
MaxandMin(a, left, mid, leftmax, leftmin) ;

int rightmax ;
int rightmin ;
MaxandMin(a, mid + 1, right, rightmax, rightmin) ;

max = leftmax > rightmax ? leftmax : rightmax ;
secOnd= leftmax }
}


求数组中出现次数超过一半的元素
给定一个n个整型元素的数组a,其中有一个元素出现次数超过n / 2,求这个元素。据说是百度的一道面试题。

设置一个当前值和当前值的计数器,初始化当前值为数组首元素,计数器值为1,然后从第二个元素开始遍历整个数组,对于每个被遍历到的值a[i]。

如果a[i]==currentValue,则计数器值加1。
如果a[i] != currentValue, 则计数器值减1,如果计数器值小于0,则更新当前值为a[i],并将计数器值重置为1。

代码如下:


// 找出数组中出现次数超过一半的元素
int Find(int* a, int n)
{
int curValue = a[0] ;
int count = 1 ;

for (int i = 1; i


另一个方法是先对数组排序,然后取中间元素即可,因为如果某个元素的个数超过一半,那么数组排序后该元素必定占据数组的中间位置。

求数组中元素的最短距离
给定一个含有n个元素的整型数组,找出数组中的两个元素x和y使得abs(x - y)值最小。

先对数组排序,然后遍历一次即可:

代码如下:


int compare(const void* a, const void* b)
{
return *(int*)a - *(int*)b ;
}

void MinimumDistance(int* a, int n)
{
// Sort
qsort(a, n, sizeof(int), compare) ;

int i ; // Index of number 1
int j ; // Index of number 2

int minDistance = numeric_limits::max() ;
for (int k = 0; k {
if (a[k + 1] - a[k] {
minDistance = a[k + 1] - a[k] ;
i = a[k] ;
j = a[k + 1] ;
}
}

cout <<"Minimum distance is: " <cout <<"i = " < 代码如下:


// 找出两个数组的共同元素
void FindCommon(int* a, int* b, int n)
{
int i = 0;
int j = 0 ;

while (i {
if (a[i] ++i ;
else if(a[i] == b[j])
{
cout <++i ;
++j ;
}
else// a[i] > b[j]
++j ;
}
}


这到题还有其他的解法,比如对于a中任意一个元素,在b中对其进行Binary Search,因为a中有n个元素,而在b中进行Binary Search需要logn。所以找出全部相同元素的时间复杂度是O(nlogn)。

另外,上面的方法,只要b有序即可,a是否有序无所谓,因为我们只是在b中做Binary Search。如果a也有序的话,那么再用上面的方法就有点慢了,因为如果a中某个元素在b中的位置是k的话,那么a中下一个元素在b中的位置一定位于k的右侧,所以本次的搜索空间可以根据上次的搜索结果缩小,而不是仍然在整个b中搜索。也即如果a和b都有序的话,代码可以做如下修改,记录上次搜索时b中元素的位置,作为下一次搜索的起始点。

求三个数组的共同元素
给定三个含有n个元素的整型数组a,b和c,求他们最小的共同元素。

如果三个数组都有序,那么可以设置三个指针指向三个数组的头部,然后根据这三个指针所指的值进行比较来移动指针,直道找到共同元素。

代码如下:


// 三个数组的共同元素-只找最小的
void FindCommonElements(int a[], int b[], int c[], int x, int y, int z)
{
for(int i = 0, j = 0, k = 0; i {
if(a[i] {
i++ ;
}
else // a[i] >= b[j]
{
if(b[j] {
j++ ;
}
else // b[j] >= c[k]
{
if(c[k] {
k++ ;
}
else // c[k] >= a[i]
{
cout <return ;
}
}
}
}

cout <<"Not found!" <}


如果三个数组都无序,可以先对a, b进行排序,然后对c中任意一个元素都在b和c中做二分搜索。

代码如下:


// Find the unique common element in 3 arrays
// O(NlogN)
int UniqueCommonItem(int *a, int *b, int *c, int n)
{
// sort array a
qsort(a, n, sizeof(int), compare) ; // NlogN

// sort array b
qsort(b, n, sizeof(int), compare) ; // NlogN

// for each element in array c, do a binary search in a and b
// This is up to a complexity of N*2*logN
for (int i = 0; i {
if(BinarySearch(a, n, c[i]) && BinarySearch(b, n, c[i]))
return c[i] ;
}

return - 1 ; // not found
}


也可以对a进行排序,然后对于b和c中任意一个元素都在a中进行二分搜索。

代码如下:


// Find the unique common element in 3 arrays
// O(NlogN)
int UniqueCommonItem1(int *a, int *b, int *c, int n)
{
// sort array a
qsort(a, n, sizeof(int), compare) ; // NlogN

// Space for time
bool *bb = new bool[n] ;
memset(bb, 0, n) ;

bool *bc = new bool[n] ;
memset(bb, 0, n) ;

// for each element in b, do a BS in a and mark all the common element
for (int i = 0; i {
if(BinarySearch(a, n, b[i]))
bb[i] = true ;
}

// for each element in c, do a BS only if b[i] is true
for (int i = 0; i {
if(b[i] && BinarySearch(a, n, c[i]))
return c[i] ;
}

return - 1 ; // not found
}


排序和二分搜索代码如下:

代码如下:


// Determine whether a contains value k
bool BinarySearch(int *a, int n, int k)
{
int left = 0 ;
int right = n - 1 ;
while (left <= right)
{
int mid = (left + right) ;

if(a[mid] left = mid + 1 ;
if(a[mid] == k)
return true ;
else
right = mid - 1 ;
}

return false ;
}

// Compare function for qsort
int compare(const void* a, const void* b)
{
return *(int*)a - *(int*)b ;
}


总结一下,对于在数组中进行查找的问题,可以分如下两种情况处理:

如果给定的数组有序,那么首先应该想到Binary Search,所需O(logn)。
如果给定的数组无序,那么首先应该想到对数组进行排序,很多排序算法都能在O(nlogn)时间内对数组进行排序,然后再使用二分搜索,总的时间复杂度仍是O(nlogn)。
如果能做到以上两点,大多数关于数组的查找问题,都能迎刃而解。

找出数组中唯一的重复元素
给定含有1001个元素的数组,其中存放了1-1000之内的整数,只有一个整数是重复的,请找出这个数。

求出整个数组的和,再减去1-1000的和即可,代码略。

找出出现奇数次的元素
给定一个含有n个元素的整型数组a,其中只有一个元素出现奇数次,找出这个元素。

因为对于任意一个数k,有k ^ k = 0,k ^ 0 = k,所以将a中所有元素进行异或,那么个数为偶数的元素异或后都变成了0,只留下了个数为奇数的那个元素。

int FindElementWithOddCount(int *a, int n)
{
int r = a[0] ;

for (int i = 1; i
求数组中满足给定和的数对
给定两个有序整型数组a和b,各有n个元素,求两个数组中满足给定和的数对,即对a中元素i和b中元素j,满足i + j = d(d已知)。

两个指针i和j分别指向数组的首尾,然后从两端同时向中间遍历,直到两个指针交叉。

代码如下:


// 找出满足给定和的数对
void FixedSum(int* a, int* b, int n, int d)
{
for (int i = 0, j = n - 1; i = 0)
{
if (a[i] + b[j] ++i ;
else if (a[i] + b[j] == d)
{
cout <++i ;
--j ;
}
else // a[i] + b[j] > d
--j ;
}
}


最大子段和
给定一个整型数组a,求出最大连续子段之和,如果和为负数,则按0计算,比如1, 2, -5, 6, 8则输出6 + 8 = 14。

编程珠玑上的经典题目,不多说了。

代码如下:


// 子数组的最大和
int Sum(int* a, int n)
{
int curSum = 0;
int maxSum = 0;
for (int i = 0; i {
if (curSum + a[i] <0)
curSum = 0;
else
{
curSum += a[i] ;
maxSum = max(maxSum, curSum);
}
}
return maxSum;
}


最大子段积
给定一个整型数足a,求出最大连续子段的乘积,比如 1, 2, -8, 12, 7则输出12 * 7 = 84。

与最大子段和类似,注意处理负数的情况。

代码如下:


// 子数组的最大乘积
int MaxProduct(int *a, int n)
{
int maxProduct = 1; // max positive product at current position
int minProduct = 1; // min negative product at current position
int r = 1; // result, max multiplication totally

for (int i = 0; i {
if (a[i] > 0)
{
maxProduct *= a[i];
minProduct = min(minProduct * a[i], 1);
}
else if (a[i] == 0)
{
maxProduct = 1;
minProduct = 1;
}
else // a[i] <0
{
int temp = maxProduct;
maxProduct = max(minProduct * a[i], 1);
minProduct = temp * a[i];
}

r = max(r, maxProduct);
}

return r;
}


数组循环移位
将一个含有n个元素的数组向右循环移动k位,要求时间复杂度是O(n),且只能使用两个额外的变量,这是在微软的编程之美上看到的一道题。

比如数组 1 2 3 4循环右移1位 将变成 4 1 2 3, 观察可知1 2 3 的顺序在移位前后没有改变,只是和4的位置交换了一下,所以等同于1 2 3 4 先划分为两部分 1 2 3 | 4,然后将1 2 3逆序,再将4 逆序 得到 3 2 1 4,最后整体逆序 得到 4 1 2 3。

代码如下:


// 将buffer中start和end之间的元素逆序
void Reverse( int buffer[], int start, int end )
{
while ( start {
int temp = buffer[ start ] ;
buffer[ start++ ] = buffer[ end ] ;
buffer[ end-- ] = temp ;
}
}

// 将含有n个元素的数组buffer右移k位
void Shift( int buffer[], int n, int k )
{
k %= n ;

Reverse( buffer, 0, n - k - 1) ;
Reverse( buffer, n - k, n - 1 ) ;
Reverse( buffer, 0, n - 1 ) ;
}


字符串逆序
给定一个含有n个元素的字符数组a,将其原地逆序。

可能您觉得这不是关于数组的,而是关于字符串的。是的。但是别忘了题目要求的是原地逆序,也就是不允许额外分配空间,那么参数肯定是字符数组形式,因为字符串是不能被修改的(这里只C/C++中的字符串常量),所以,和数组有关了吧,只不过不是整型数组,而是字符数组。用两个指针分别指向字符数组的首位,交换其对应的字符,然后两个指针分别向数组中央移动,直到交叉。

代码如下:


// 字符串逆序
void Reverse(char *a, int n)
{
int left = 0;
int right = n - 1;

while (left {
char temp = a[left] ;
a[left++] = a[right] ;
a[right--] = temp ;
}
}


组合问题
给定一个含有n个元素的整型数组a,从中任取m个元素,求所有组合。比如下面的例子:

a = 1, 2, 3, 4, 5
m = 3

输出:

1 2 3, 1 2 4, 1 2 5, 1 3 4, 1 3 5, 1 4 5
2 3 4, 2 3 5, 2 4 5
3 4 5

典型的排列组合问题,首选回溯法,为了简化问题,我们将a中n个元素值分别设置为1-n。

代码如下:


// n选m的所有组合
int buffer[100] ;

void PrintArray(int *a, int n)
{
for (int i = 0; i cout <cout <}

bool IsValid(int lastIndex, int value)
{
for (int i = 0; i {
if (buffer[i] >= value)
return false;
}
return true;
}

void Select(int t, int n, int m)
{
if (t == m)
PrintArray(buffer, m);
else
{
for (int i = 1; i <= n; i++)
{
buffer[t] = i;
if (IsValid(t, i))
Select(t + 1, n, m);
}
}
}


合并两个数组
给定含有n个元素的两个有序(非降序)整型数组a和b。合并两个数组中的元素到整型数组c,要求去除重复元素并保持c有序(非降序)。例子如下:

a = 1, 2, 4, 8
b = 1, 3, 5, 8
c = 1, 2, 3, 4, 5, 8

利用合并排序的思想,两个指针i,j和k分别指向数组a和b,然后比较两个指针对应元素的大小,有以下三种情况:

a[i]
a[i] == b[j],则c[k]等于a[i]或b[j]皆可。
a[i] > b[j],则c[k] = b[j]。
重复以上过程,直到i或者j到达数组末尾,然后将剩下的元素直接copy到数组c中即可。

代码如下:


// 合并两个有序数组
void Merge(int *a, int *b, int *c, int n)
{
int i = 0 ;
int j = 0 ;
int k = 0 ;

while (i {
if (a[i] {
c[k++] = a[i] ;
++i ;
}
else if (a[i] == b[j])// 如果a和b元素相等,则插入二者皆可,这里插入a
{
c[k++] = a[i] ;
++i ;
++j ;
}
else // a[i] > b[j] // 如果b中元素小,则插入b中元素到c
{
c[k++] = b[j] ;
++j ;
}
}

if (i == n) // 若a遍历完毕,处理b中剩下的元素
{
for (int m = j; m c[k++] = b[m] ;
}
else//j == n, 若b遍历完毕,处理a中剩下的元素
{
for (int m = i; m c[k++] = a[m] ;
}
}


重排问题
给定含有n个元素的整型数组a,其中包括0元素和非0元素,对数组进行排序,要求:

排序后所有0元素在前,所有非零元素在后,且非零元素排序前后相对位置不变。
不能使用额外存储空间。
例子如下:输入 0, 3, 0, 2, 1, 0, 0,输出 0, 0, 0, 0, 3, 2, 1。

此排序非传统意义上的排序,因为它要求排序前后非0元素的相对位置不变,或许叫做整理会更恰当一些。我们可以从后向前遍历整个数组,遇到某个位置i上的元素是非0元素时,如果a[k]为0,则将a[i]赋值给a[k],a[k]赋值为0。实际上i是非0元素的下标,而k是0元素的下标。

代码如下:


void Arrange(int* a, int n)
{
int k = n - 1 ;
for (int i = n - 1; i >= 0; --i)
{
if (a[i] != 0)
{
if (a[k] == 0)
{
a[k] = a[i] ;
a[i] = 0 ;
}
--k ;
}
}
}

推荐阅读
  • H5技术实现经典游戏《贪吃蛇》
    本文将分享一个使用HTML5技术实现的经典小游戏——《贪吃蛇》。通过H5技术,我们将探讨如何构建这款游戏的两种主要玩法:积分闯关和无尽模式。 ... [详细]
  • 使用Matlab创建动态GIF动画
    动态GIF图可以有效增强数据表达的直观性和吸引力。本文将详细介绍如何利用Matlab软件生成动态GIF图,涵盖基本代码实现与高级应用技巧。 ... [详细]
  • 在解决ACM竞赛题目或力扣挑战时,通常面临1秒到2秒的时间限制。为了确保程序能够高效运行,C++等语言的代码执行次数建议不超过1千万次。 ... [详细]
  • 吴石访谈:腾讯安全科恩实验室如何引领物联网安全研究
    腾讯安全科恩实验室曾两次成功破解特斯拉自动驾驶系统,并远程控制汽车,展示了其在汽车安全领域的强大实力。近日,该实验室负责人吴石接受了InfoQ的专访,详细介绍了团队未来的重点方向——物联网安全。 ... [详细]
  • 变量间相关性分析
    本文探讨了如何通过统计方法评估两个变量之间的关系强度,重点介绍了皮尔森相关系数的计算及其应用。除了数学公式外,文章还提供了Python编程实例,展示如何利用实际数据集(如泰坦尼克号乘客数据)进行相关性检验。 ... [详细]
  • OpenCV中的霍夫圆检测技术解析
    本文详细介绍了如何使用OpenCV库中的HoughCircles函数实现霍夫圆检测,并提供了具体的代码示例及参数解释。 ... [详细]
  • 本文提供了一种有效的方法来解决当Android Studio因电脑意外重启而导致的所有import语句出现错误的问题。通过清除缓存和重建项目结构,可以快速恢复开发环境。 ... [详细]
  • 网络流24题——试题库问题
    题目描述:假设一个试题库中有n道试题。每道试题都标明了所属类别。同一道题可能有多个类别属性。现要从题库中抽取m道题组成试卷。并要求试卷包含指定类型的试题。试设计一个满足要求的组卷算 ... [详细]
  • 本文介绍了如何利用OpenCV库进行图像的边缘检测,并通过Canny算法提取图像中的边缘。随后,文章详细说明了如何识别图像中的特定形状(如矩形),并应用四点变换技术对目标区域进行透视校正。 ... [详细]
  • 本文将详细探讨 Python 编程语言中 sys.argv 的使用方法及其重要性。通过实际案例,我们将了解如何在命令行环境中传递参数给 Python 脚本,并分析这些参数是如何被处理和使用的。 ... [详细]
  • 本文将探讨一个经典算法问题——最大连续子数组和。我们将从问题定义出发,逐步深入理解其背后的逻辑,并通过实例分析加深理解。 ... [详细]
  • 本文介绍了多维缩放(MDS)技术,这是一种将高维数据映射到低维空间的方法,通过保持原始数据间的关系,以便于可视化和分析。文章详细描述了MDS的原理和实现过程,并提供了Python代码示例。 ... [详细]
  • 本文详细介绍了如何在Spring框架中设置事件发布器、定义事件监听器及响应事件的具体步骤。通过实现ApplicationEventPublisherAware接口来创建事件发布器,利用ApplicationEvent类定义自定义事件,并通过ApplicationListener接口来处理这些事件。 ... [详细]
  • TCP协议中的可靠传输机制分析
    本文深入探讨了TCP协议如何通过滑动窗口和超时重传来确保数据传输的可靠性,同时介绍了流量控制和拥塞控制的基本原理及其在实际网络通信中的应用。 ... [详细]
  • Maven + Spring + MyBatis + MySQL 环境搭建与实例解析
    本文详细介绍如何使用MySQL数据库进行环境搭建,包括创建数据库表并插入示例数据。随后,逐步指导如何配置Maven项目,整合Spring框架与MyBatis,实现高效的数据访问。 ... [详细]
author-avatar
热情article文章_673_621
这个家伙很懒,什么也没留下!
PHP1.CN | 中国最专业的PHP中文社区 | DevBox开发工具箱 | json解析格式化 |PHP资讯 | PHP教程 | 数据库技术 | 服务器技术 | 前端开发技术 | PHP框架 | 开发工具 | 在线工具
Copyright © 1998 - 2020 PHP1.CN. All Rights Reserved | 京公网安备 11010802041100号 | 京ICP备19059560号-4 | PHP1.CN 第一PHP社区 版权所有