热门标签 | HotTags
当前位置:  开发笔记 > 编程语言 > 正文

mysqlupdate会自动加锁吗_MySQL意外宕机不难解决,数据会丢么?但你真的懂数据恢复吗?...

点击上面蓝色字体关注我们技术架构职场面试关注即送:4000G架构师视频来源:sq.163yun.comblogarticle17254663166878
bb90f1ec1d51dfc05ec4b2572406b0f0.png点击上面 蓝色字体关注我们技术 / 架构 / 职场 / 面试 关注即送:4000G  架构师视频

来源:sq.163yun.com/blog/article/172546631668785152

InnoDB如果发生意外宕机了,数据会丢么?

对于这个问题,稍微了解一点MySQL知识的人,都会斩钉截铁的回答:不会!

为什么?

他们也会毫不犹豫地说:因为有重做日志(redo log),数据可以通过redo log进行恢复。

回答得很好,那么InnoDB怎样通过redo log进行数据恢复的,具体的流程是怎样的?

估计能说清楚这个问题的人所剩不多了,更深入一点:除了redo log,InnoDB在恢复过程中,还需要其他信息么?比如是否需要binlog参与?undo日志在恢复过程中又会起到什么作用?

到这里,可能很多人会变得疑惑起来:数据恢复跟undo有半毛钱的关系?

其实,InnoDB的数据恢复是一个很复杂的过程,这个恢复过程需要redo log、binlog、undo log等参与。这里把InnoDB的恢复过程主要划分为两个阶段:

第一阶段主要依赖于redo log的恢复;

而第二阶段,恰恰需要binlog和undo log的共同参与。

接下来,我们来具体了解下整个恢复的过程:

一、依赖redo log进行恢复

第一阶段,数据库启动后,InnoDB会通过redo log找到最近一次checkpoint的位置,然后根据checkpoint相对应的LSN开始,获取需要重做的日志,接着解析获取的日志并且保存到一个哈希表中,最后通过遍历哈希表中的redo log信息,读取相关页进行恢复。

InnoDB的checkpoint信息保存在日志文件中,即ib_logfile0的开始2048个字节中,checkpoint有两个,交替更新,checkpoint与日志文件的关系如下图:

8647ef994bd61f027fb9681fd15b6753.png

(checkpoint位置)

checkpoint信息分别保存在ib_logfile0的512字节和1536字节处,每个checkpoint默认大小为512字节,InnoDB的checkpoint主要由3部分信息组成:

checkpoint no:主要保存的是checkpoint号,因为InnoDB有两个checkpoint,通过checkpoint号来判断哪个checkpoint更新。

checkpoint lsn:主要记录了产生该checkpoint是flush的LSN,确保在该LSN前面的数据页都已经落盘,不再需要通过redo log进行恢复。

checkpoint offset:主要记录了该checkpoint产生时,redo log在ib_logfile中的偏移量,通过该offset位置就可以找到需要恢复的redo log开始位置。

通过以上checkpoint的信息,我们可以简单得到需要恢复的redo log的位置,然后通过顺序扫描该redo log来读取数据,比如我们通过checkpoint定位到开始恢复的redo log位置在ib_logfile1中的某个位置,那么整个redo log扫描的过程可能是这样的:

0da1fecdd3efa81094facb3199ff25da.png

(redo log扫描过程)

Step 1:从ib_logfile1的指定位置开始读取redo log,每次读取4 * page_size的大小,这里我们默认页面大小为16K,所以每次读取64K的redo log到缓存中,redo log每条记录(block)的大小为512字节。

Step 2:读取到缓存中的redo log通过解析、验证等一系列过程后,把redo log的内容部分保存到用于恢复的缓存recv_sys->buf,保存到恢复缓存中的每条信息主要包含两部分:(space,offset)组成的位置信息和具体redo log的内容,我们称之为body。

Step 3:同时保存在恢复缓存中的redo信息会根据(space,offset)计算一个哈希值后保存到一个哈希表(recv_sys->addr_hash)中,相同哈希值、不同(space,offset)用链表存储,相同的(space,offset)用列表保存,可能部分事务比较大,redo信息一个block不能保存,所以,每个body中可以用链表链接多body的值。

redo log被保存到哈希表中之后,InnoDB就可以开始进行数据恢复,只需要轮询哈希表中的每个节点获取redo信息,根据(space,offset)读取指定页面后进行日志覆盖。

在上面整个过程中,InnoDB为了保证恢复的速度,做了几点优化:

优化1:

在根据(space,offset)读取数据页信息到buffer pool的时候,InnoDB不是只读取一张页面,而是读取相邻的32张页面到buffer pool。这里有个假设,InnoDB认为,如果一张页面被修改了,那么其周围的一些页面很有可能也被修改了,所以一次性连续读入32张页面可以避免后续再重新读取。

优化2:

在MySQL5.7版本以前,InnoDB恢复时需要依赖数据字典,因为InnoDB根本不知道某个具体的space对应的ibd文件是哪个,这些信息都是数据字典维护的。而且在恢复前,需要把所有的表空间全部打开,如果库中有数以万计的表,把所有表打开一遍,整个过程就会很慢。那么MySQL5.7在这上面做了哪些改进呢?

其实很简单,针对上面的问题,InnoDB在redo log中增加了两种redo log的类型来解决。

MLOG_FILE_NAME

用于记录在checkpoint之后,所有被修改过的信息(space,filepath);

MLOG_CHECKPOINT

则用于标志MLOG_FILE_NAME的结束。

上面两种redo log类型的添加,完美解决了前面遗留的问题,redo log中保存了后续需要恢复的space和filepath对。所以,在恢复的时候,只需要从checkpoint的位置一直往后扫描到MLOG_CHECKPOINT的位置,这样就能获取到需要恢复的space和filepath。在恢复过程中,只需要打开这些ibd文件即可。当然由于space和filepath的对应关系通过redo存了下来,恢复的时候也不再依赖数据字典。

这里需要强调的是MLOG_CHECKPOINT在每个checkpoint点中最多存在一次,如果出现多次MLOG_CHECKPOINT类型的日志,则说明redo已经损坏,InnoDB会报错。

最多存在一次,那么会不会有不存在的情况?

答案是肯定的,在每次checkpoint过后,如果没有发生数据更新,那么MLOG_CHECKPOINT就不会被记录。所以只要查找下redo log最新一个checkpoint后的MLOG_CHECKPOINT是否存在,就能判定上次MySQL是否正常关机。

5.7版本的MySQL在InnoDB进行恢复的时候,也正是这样做的,MySQL5.7在进行恢复的时候,一般情况下需要进行最多3次的redo log扫描:

1、首先对redo log的扫描,主要是为了查找MLOG_CHECKPOINT,这里并不进行redo log的解析。如果你没有找到MLOG_CHECKPOINT,则说明InnoDB不需要进行recovery,后面的两次扫描可以省略;如果找到了MLOG_CHECKPOINT,则获取MLOG_FILE_NAME到指定列表,后续只需打开该链表中的表空间即可。

2、下一步的扫描是在第一次找到MLOG_CHECKPOINT基础之上进行的,该次扫描会把redo log解析到哈希表中,如果扫描完整个文件,哈希表还没有被填满,则不需要第三次扫描,直接进行recovery就结束。

3、最后是在第二次基础上进行的,第二次扫描把哈希表填满后,还有redo log剩余,则需要循环进行扫描,哈希表满后立即进行recovery,直到所有的redo log被apply完为止。

redo log全部被解析并且apply完成,整个InnoDB recovery的第一阶段也就结束了,在该阶段中,所有已经被记录到redo log但是没有完成数据刷盘的记录都被重新落盘。

然而,InnoDB单靠redo log的恢复是不够的,这样还是有可能会丢失数据(或者说造成主从数据不一致)。

因为在事务提交过程中,写binlog和写redo log提交是两个过程,写binlog在前而redo提交在后,如果MySQL写完binlog后,在redo提交之前发生了宕机,这样就会出现问题:binlog中已经包含了该条记录,而redo没有持久化。binlog已经落盘就意味着slave上可以apply该条数据,redo没有持久化则代表了master上该条数据并没有落盘,也不能通过redo进行恢复。

这样就造成了主从数据的不一致,换句话说主上丢失了部分数据,那么MySQL又是如何保证在这样的情况下,数据还是一致的?这就需要进行第二阶段恢复。

二、binlog和undo log共同参与

前面提到,在第二阶段恢复中,需要用到binlog和undo log,下面我们就来看下具体的恢复逻辑是怎样的?

其实该阶段的恢复中,也被划分成两部分:第一部分,根据binlog获取所有可能没有提交事务的xid列表;第二部分,根据undo中的信息构造所有未提交事务链表,最后通过上面两部分协调判断事务是否可以提交。

047d9f72e443be4fde9112dbd1550dc8.png

(根据binlog获取xid列表)

如上图所示,MySQL在第二阶段恢复的时候,先会去读取最后一个binlog文件的所有event信息,然后把xid保存到一个列表中,然后进行第二部分的恢复,如下:

93aebeea11a6f78d26ea9d23061f406e.png

(基于undo构造事务链表)

我们知道,InnoDB当前版本有128个回滚段,每个回滚段中保存了undo log的位置指针,通过扫描undo日志,我们可以构造出还未被提交的事务链表(存在于insert_undo_list和update_undo_lsit中的事务都是未被提交的),所以通过起始页(0,5)下的solt信息可以定位到回滚段,然后根据回滚段下的undo的slot定位到undo页,把所有的undo信息构建一个undo_list,然后通过undo_list再创建未提交事务链表trx_sys->trx_list。

基于上面两步, 我们已经构建了xid列表和未提交事务列表,那么在这些未提交事务列表中的事务,哪些需要被提交?哪些又该回滚?

判断条件很简单:凡是xid在通过binlog构建的xid列表中存在的事务,都需要被提交。换句话说,所有已经记录binlog的事务,需要被提交,而剩下那些没有记录binlog的事务,则需要被回滚。

三、回顾优化

通过上述两个阶段的数据恢复,InnoDB才最终完成整个recovery过程,回过头来我们再想想,在上述两个阶段中,是否还有优化空间?比如第一阶段,在构造完哈希表后,事务的恢复是否可以并发进行?理论上每个hash node是根据(space,offset)生成的,不同的hash node之间不存在冲突,可以并行进行恢复。

或者在根据哈希表进行数据页读取时,每次读取连续32张页面,这里读取的32张页面,可能有部分是不需要的,也同时被读入到Buffer Pool中了,是否可以在构建一颗红黑树,根据(space,offset)组合键进行插入,这样如果需要恢复的时候,可以根据红黑树的排序原理,把所有页面的读取顺序化,并不需要读取额外的页面。

更多技术干货

MySQL每秒57万的写入,带你飞 作为面试官,我是如何甄别应聘者的包装程度 实现故障恢复自动化:详解Redis哨兵技术 值得收藏:一份非常完整的MySQL规范 Redis查漏补缺:最易错过的技术要点大扫盲 Java性能优化的45个细节(珍藏版)

3283917dcc7b428067175144f215e13c.png

▼ 点击4000G 架构师视频




推荐阅读
  • 本文详细介绍了Java编程语言中的核心概念和常见面试问题,包括集合类、数据结构、线程处理、Java虚拟机(JVM)、HTTP协议以及Git操作等方面的内容。通过深入分析每个主题,帮助读者更好地理解Java的关键特性和最佳实践。 ... [详细]
  • 2023年京东Android面试真题解析与经验分享
    本文由一位拥有6年Android开发经验的工程师撰写,详细解析了京东面试中常见的技术问题。涵盖引用传递、Handler机制、ListView优化、多线程控制及ANR处理等核心知识点。 ... [详细]
  • 从 .NET 转 Java 的自学之路:IO 流基础篇
    本文详细介绍了 Java 中的 IO 流,包括字节流和字符流的基本概念及其操作方式。探讨了如何处理不同类型的文件数据,并结合编码机制确保字符数据的正确读写。同时,文中还涵盖了装饰设计模式的应用,以及多种常见的 IO 操作实例。 ... [详细]
  • MySQL缓存机制深度解析
    本文详细探讨了MySQL的缓存机制,包括主从复制、读写分离以及缓存同步策略等内容。通过理解这些概念和技术,读者可以更好地优化数据库性能。 ... [详细]
  • 深入解析 Apache Shiro 安全框架架构
    本文详细介绍了 Apache Shiro,一个强大且灵活的开源安全框架。Shiro 专注于简化身份验证、授权、会话管理和加密等复杂的安全操作,使开发者能够更轻松地保护应用程序。其核心目标是提供易于使用和理解的API,同时确保高度的安全性和灵活性。 ... [详细]
  • 本文探讨了如何在日常工作中通过优化效率和深入研究核心技术,将技术和知识转化为实际收益。文章结合个人经验,分享了提高工作效率、掌握高价值技能以及选择合适工作环境的方法,帮助读者更好地实现技术变现。 ... [详细]
  • 优化ListView性能
    本文深入探讨了如何通过多种技术手段优化ListView的性能,包括视图复用、ViewHolder模式、分批加载数据、图片优化及内存管理等。这些方法能够显著提升应用的响应速度和用户体验。 ... [详细]
  • 1.如何在运行状态查看源代码?查看函数的源代码,我们通常会使用IDE来完成。比如在PyCharm中,你可以Ctrl+鼠标点击进入函数的源代码。那如果没有IDE呢?当我们想使用一个函 ... [详细]
  • 本文深入探讨了如何通过调整InnoDB的关键配置参数来优化MySQL的随机IO性能,涵盖了缓存、日志文件、预读机制等多个方面,帮助读者全面提升数据库系统的性能。 ... [详细]
  • 网络攻防实战:从HTTP到HTTPS的演变
    本文通过一系列日记记录了从发现漏洞到逐步加强安全措施的过程,探讨了如何应对网络攻击并最终实现全面的安全防护。 ... [详细]
  • 深入解析:阿里实战 SpringCloud 微服务架构与应用
    本文将详细介绍 SpringCloud 在微服务架构中的应用,涵盖入门、实战和案例分析。通过丰富的代码示例和实际项目经验,帮助读者全面掌握 SpringCloud 的核心技术和最佳实践。 ... [详细]
  • MySQL索引详解与优化
    本文深入探讨了MySQL中的索引机制,包括索引的基本概念、优势与劣势、分类及其实现原理,并详细介绍了索引的使用场景和优化技巧。通过具体示例,帮助读者更好地理解和应用索引以提升数据库性能。 ... [详细]
  • 深入理解Redis的数据结构与对象系统
    本文详细探讨了Redis中的数据结构和对象系统的实现,包括字符串、列表、集合、哈希表和有序集合等五种核心对象类型,以及它们所使用的底层数据结构。通过分析源码和相关文献,帮助读者更好地理解Redis的设计原理。 ... [详细]
  • 不确定性|放入_华为机试题 HJ9提取不重复的整数
    不确定性|放入_华为机试题 HJ9提取不重复的整数 ... [详细]
  • 深入解析Redis内存对象模型
    本文详细介绍了Redis内存对象模型的关键知识点,包括内存统计、内存分配、数据存储细节及优化策略。通过实际案例和专业分析,帮助读者全面理解Redis内存管理机制。 ... [详细]
author-avatar
飞舞的猫2502890283
这个家伙很懒,什么也没留下!
PHP1.CN | 中国最专业的PHP中文社区 | DevBox开发工具箱 | json解析格式化 |PHP资讯 | PHP教程 | 数据库技术 | 服务器技术 | 前端开发技术 | PHP框架 | 开发工具 | 在线工具
Copyright © 1998 - 2020 PHP1.CN. All Rights Reserved | 京公网安备 11010802041100号 | 京ICP备19059560号-4 | PHP1.CN 第一PHP社区 版权所有