热门标签 | HotTags
当前位置:  开发笔记 > 数据库 > 正文

在Oracle数据库中实现MapReduce

在程序员开发并行程序时,Map-Reduce模式正变得流行起来。这些map-reduce程序通常来并行处理大量数据。本文来演示如何在Oracle数

在程序员开发并行程序时,Map-Reduce模式正变得流行起来。这些map-reduce程序通常来并行处理大量数据。本文来演示如何在Oracle数

在程序员开发并行程序时,Map-Reduce模式正变得流行起来。这些map-reduce程序通常来并行处理大量数据。本文来演示如何在Oracle数据库上,通过使用Parallel Pipelined Table函数及并行操作,来实现Map-Reduce程序。(译者注:table()是oracle中一个函数,可以把定义为Pipelined的function的返回结果进行SQL查询)

原理:

Pipelined Table函数是在Oracle 9i引入的,作为能在数据流中嵌入过程逻辑代码方法。从逻辑上说,一个Table函数是可以出现在from子句中,该函数就像数据表一样的返回多行数据。Table函数同样也可以接收多行数据做为输入参数。大多数情况下,Pipelined Table函数可以嵌入到一个数据流中,它让数据“流”进SQL语句中,从而避免增加一个物理层(直译:具体化的中介)。再次说明,Pipelined Table函数是可以并行处理的。

为了并行Table函数,开发人员必须指定指定一个键对输入数据进行重定位。Table函数可以直接在PL/SQL, Java, and 中实现,你可以查到关于Table函数的更多信息、例子以及上面提到的那些功能,网址是:

在多个发行版中,Pipelined Table函数已经被用户使用,,并成为Oracle可扩展基础功能的一个核心部分。无论是外部用户,还是Oracle的开发部门,Table函数成为一个有效的、简单的扩充数据库核心功能的方法。

类似Table函数的功能已经在Oracle内使用,并且是Oracle Spatial 和Oracle Warehouse Builder许多特色功能的实现方式。Oracle Spatial(空间数据处理系统)使用它涉及spatial joins 和许多 spatial data的数据挖掘的操作。Oracle Warehouse Builder让让用户使用Table 函数对数据流进行并行处理的逻辑,比如Match-Merge 算法和其它逐行计算的算法。

手把手的例子

所有的例子都在omr.sql文件中。

为了说明并行的使用方法以及用Pipelined Table函数在Oracle数据库内写一个Map-Reduce算法, 我们实现一个最经典的map-reduce例子--单词计数。单词计数是实现返回一组文档中所有不重复单词出现的个数的程序,也可以说是查询单词出现频率功能。

示例代码是用PL/SQL实现,但如前所说,Oracle允许你选择其它语言来实现这个过程逻辑。

1、配置环境

我们将在一组文档中查找,这些文档可以是数据库之外的文件中,也可以保存在Secure Files/CLOB的数据库内的列中。在我们这个存文档的表也相当于一个文件系统。

在本例中,我们将在数据库内创建一个表,用下面的声明:

该表的每一行都对应一个文档,我们在用下面的语句,这个表中插入三个简单的文档:

INSERT INTO documents VALUES ('abc def');
INSERT INTO documents VALUES ('def ghi');
INSERT INTO documents VALUES ('ghi jkl');
commit;

map代码和reduce代码都将包含在一个包中,保持代码的整洁。为了展示这些步骤,我将把这些代码段从包中拿出来,在下面各小节展示。在实际的包中,还必须要定义几个types。所有代码均在Oracle Database 11g (11.1.0.6)测试通过。

2、创建Mapper and the Reducer

首先我们要创建一个普通的map函数来给文档做标记。记住,我们不是要展示这个map函数有多么好,而是要表达这在数据库工作的原理。这个map函数非常基本,其它地方也可能有更好的实现。

你可以使用数据库的聚合引擎及仅map函数来得到最终结果。一个请求和结果看起来是: SQL完成聚合操作,不需要reducer的函数。

当然,你也可以写自己的聚合的Table函数来计算单词的出现次数。如果你不用oracle的聚合引擎的话,你必须自己来写map-reduce的程序。这个聚合Table函数就相当于map-reduce中的reducer部分。

Table函数要求输入必须按单词分组,需要将数据排序(用oracle 执行引擎的sort)或单词分簇。我们展示一个简单的记数程序在本文中。

第3步 ,数据库中进行map-reduce

当你写完mapper and the reducer后,你就可以在数据库中进行map-reduce.执行一个包含Table函数的请求,就能对外部文档进行并行的按照map-reduce的代码执行。

总结

Oracle Table函数是经得起验证的技术,并在Oracle的内外广泛使用的扩展Oracle11g的技术。

Oracle Table函数是稳定并可扩展的方法,在Oracle数据库内实现Map-Reduce,并且能够利用Oracle并行执行框架的扩展性。在SQL中利用它,能让数据库开发人员用自己熟悉的环境和语言,为他们提供一个有效的、简单的机制去实现Map-Reduce方法。

你可以下载orm.sql,没有什么特殊的权限需求。

附:orm.sql代码

CREATE TABLE documents (a CLOB)
LOB(a) STORE AS SECUREFILE(TABLESPACE sysaux);

INSERT INTO documents VALUES ('abc def');
INSERT INTO documents VALUES ('def ghi');
INSERT INTO documents VALUES ('ghi jkl');
commit;

create or replace
package oracle_map_reduce is

type word_t is record (word varchar2(4000));
type words_t is table of word_t;

type word_cur_t is ref cursor return word_t;
type wordcnt_t is record (word varchar2(4000), count number);
type wordcnts_t is table of wordcnt_t;

function mapper(doc in sys_refcursor, sep in varchar2) return words_t
pipelined parallel_enable (partition doc by any);

function reducer(in_cur in word_cur_t) return wordcnts_t
pipelined parallel_enable (partition in_cur by hash(word))
cluster in_cur by (word);

end;
/

create or replace
package body oracle_map_reduce is

--
-- The mapper is a simple tokenizer that tokenizes the input documents
-- and emits inpidual words
--
function mapper(doc in sys_refcursor, sep in varchar2) return words_t
pipelined parallel_enable (partition doc by any)
is
document clob;
istart number;
pos number;
len number;
word_rec word_t;
begin

-- for every document
loop

fetch doc into document;
exit when doc%notfound;

istart := 1;
len := length(document);

-- For every word within a document
while (istart <= len) loop
pos := instr(document, sep, istart);

if (pos = 0) then
word_rec.word := substr(document, istart);
pipe row (word_rec);
istart := len + 1;
else
word_rec.word := substr(document, istart, pos - istart);
pipe row (word_rec);
istart := pos + 1;
end if;

end loop; -- end loop for a single document

end loop; -- end loop for all documents

return;

end mapper;

--
-- The reducer emits words and the number of times they're seen
--
function reducer(in_cur in word_cur_t) return wordcnts_t
pipelined parallel_enable (partition in_cur by hash(word))
cluster in_cur by (word)
is
word_count wordcnt_t;
next varchar2(4000);
begin

word_count.count := 0;

loop

fetch in_cur into next;
exit when in_cur%notfound;

if (word_count.word is null) then

word_count.word := next;
word_count.count := word_count.count + 1;

elsif (next <> word_count.word) then

pipe row (word_count);
word_count.word := next;
word_count.count := 1;

else

word_count.count := word_count.count + 1;

end if;

end loop;

if word_count.count <> 0 then
pipe row (word_count);
end if;

return;

end reducer;

end;
/


-- Select statements

select word, count(*)
from (
select value(map_result).word word
from table(oracle_map_reduce.mapper(cursor(select a from documents), ' ')) map_result)
group by (word);

select *
from table(oracle_map_reduce.reducer(
cursor(select value(map_result).word word
from table(oracle_map_reduce.mapper(
cursor(select a from documents), ' ')) map_result)));

英文原文:In-Database MapReduce (Map-Reduce)

Oracle 11g 在RedHat Linux 5.8_x64平台的安装手册

Linux-6-64下安装Oracle 12C笔记

在CentOS 6.4下安装Oracle 11gR2(x64)

Oracle 11gR2 在VMWare虚拟机中安装步骤

Debian 下 安装 Oracle 11g XE R2


推荐阅读
  • Hadoop入门与核心组件详解
    本文详细介绍了Hadoop的基础知识及其核心组件,包括HDFS、MapReduce和YARN。通过本文,读者可以全面了解Hadoop的生态系统及应用场景。 ... [详细]
  • 本文详细介绍如何使用Python进行配置文件的读写操作,涵盖常见的配置文件格式(如INI、JSON、TOML和YAML),并提供具体的代码示例。 ... [详细]
  • 1:有如下一段程序:packagea.b.c;publicclassTest{privatestaticinti0;publicintgetNext(){return ... [详细]
  • MySQL 数据库迁移指南:从本地到远程及磁盘间迁移
    本文详细介绍了如何在不同场景下进行 MySQL 数据库的迁移,包括从一个硬盘迁移到另一个硬盘、从一台计算机迁移到另一台计算机,以及解决迁移过程中可能遇到的问题。 ... [详细]
  • 掌握Python岗位,你需要了解的关键技能
    最近,在社交平台脉脉上,一条关于Python岗位的消息引起了广泛关注。本文将探讨Python岗位的实际价值,并深入解析阿里巴巴等大公司在面试Python开发者时常见的问题。 ... [详细]
  • 解决getallheaders函数导致的500错误及8种服务器性能优化策略
    本文探讨了解决getallheaders函数引起的服务器500错误的方法,并介绍八种有效的服务器性能优化技术,包括内存数据库的应用、Spark RDD的使用、缓存策略的实施、SSD的引入、数据库优化、IO模型的选择、多核处理策略以及分布式部署方案。 ... [详细]
  • 深入理解C++中的KMP算法:高效字符串匹配的利器
    本文详细介绍C++中实现KMP算法的方法,探讨其在字符串匹配问题上的优势。通过对比暴力匹配(BF)算法,展示KMP算法如何利用前缀表优化匹配过程,显著提升效率。 ... [详细]
  • 本文详细介绍了如何在 Linux 平台上安装和配置 PostgreSQL 数据库。通过访问官方资源并遵循特定的操作步骤,用户可以在不同发行版(如 Ubuntu 和 Red Hat)上顺利完成 PostgreSQL 的安装。 ... [详细]
  • MySQL缓存机制深度解析
    本文详细探讨了MySQL的缓存机制,包括主从复制、读写分离以及缓存同步策略等内容。通过理解这些概念和技术,读者可以更好地优化数据库性能。 ... [详细]
  • 探索Python编程的价值与应用
    本文探讨了学习Python的重要性和广泛的应用场景,从个人技能提升到职业发展的多个方面进行了详细解析。 ... [详细]
  • 本文深入探讨了数据挖掘领域内的十个经典算法,包括但不限于C4.5决策树、K-Means聚类、支持向量机等。这些算法不仅在理论上有深厚的数学基础,也在实践中展现出强大的应用价值。 ... [详细]
  • 数据集成策略:ETL与ELT架构对比及工具选择
    随着企业信息化的深入发展,‘数据孤岛’问题日益突出,阻碍了数据的有效利用与整合。本文探讨了如何通过构建数据仓库解决这一问题,重点分析了ETL与ELT两种数据处理架构的特点及适用场景,为企业选择合适的ETL工具提供了指导。 ... [详细]
  • 本文探讨了数据挖掘技术的发展及其在大数据环境下的应用流程,重点介绍了统计学、在线分析处理、信息检索、机器学习、专家系统和模式识别等领域的最新进展。 ... [详细]
  • 大数据核心技术解析
    本文深入探讨了大数据技术的关键领域,包括数据的收集、预处理、存储管理、以及分析挖掘等方面,旨在提供一个全面的技术框架理解。 ... [详细]
  • 使用R语言进行Foodmart数据的关联规则分析与可视化
    本文探讨了如何利用R语言中的arules和arulesViz包对Foodmart数据集进行关联规则的挖掘与可视化。文章首先介绍了数据集的基本情况,然后逐步展示了如何进行数据预处理、规则挖掘及结果的图形化呈现。 ... [详细]
author-avatar
爱情de眷恋_558
这个家伙很懒,什么也没留下!
PHP1.CN | 中国最专业的PHP中文社区 | DevBox开发工具箱 | json解析格式化 |PHP资讯 | PHP教程 | 数据库技术 | 服务器技术 | 前端开发技术 | PHP框架 | 开发工具 | 在线工具
Copyright © 1998 - 2020 PHP1.CN. All Rights Reserved | 京公网安备 11010802041100号 | 京ICP备19059560号-4 | PHP1.CN 第一PHP社区 版权所有