热门标签 | HotTags
当前位置:  开发笔记 > 数据库 > 正文

BI-SSAS简介篇

一、是什么?SSAS是用于SQLServer数据库用于BI的组件,通过SSAS可以创建多维数据库,并在之上进行数据挖掘操作。本文我们主要介绍一些关于SSAS数据分析的知识。接下来就让我们来一起了解一下吧。商业智能提供的解决方案能够从多种数据源获取数据并且能够把

一、是什么? SSAS是用于SQLServer数据库用于BI的组件,通过SSAS可以创建多维数据库,并在之上进行数据挖掘操作。本文我们主要介绍一些关于SSAS数据分析的知识。接下来就让我们来一起了解一下吧。 商业智能提供的解决方案能够从多种数据源获取数据并且能够把

一、是什么?

SSAS是用于SQLServer数据库用于BI的组件,通过SSAS可以创建多维数据库,并在之上进行数据挖掘操作。本文我们主要介绍一些关于SSAS数据分析的知识。接下来就让我们来一起了解一下吧。

商业智能提供的解决方案能够从多种数据源获取数据并且能够把各种数据转化成同一格式数据进行存储,最终达到让用户可以快速访问解读数据,为用户分析和制定决定提供有效的数据支持,那么SSAS就是通过建立多维的数据集来为数据的分析提供更快捷更高校的数据挖掘。

二、结构

SSAS又称挖掘结构,定义生成挖掘模型时依据的数据:它指定源数据视图、列数量和类型以及分为定型集和测试集的可选分区。单个挖掘结构可以支持多个共享同一个域的挖掘模型。下图说明了数据挖掘结构与数据源以及构成数据挖掘模型之间的关系。

http://www.68idc.cn)】>处理数据:源到结构到模型

关系图中的挖掘结构基于包含多个表或视图的数据源,它们按 CustomerID字段进行联接。一个表包含有关客户的信息,例如地理区域、年龄、收入和性别,而相关嵌套表包含每个客户的多行其他相关信息,例如客户已购买的产品。此关系图显示根据一个挖掘结构可以生成多个模型,并且这些模型可以使用该结构中的不同列。

模型1 使用 CustomerID、收入、年龄和区域,并根据区域筛选数据。

模型2 使用 CustomerID、收入、年龄和区域,并根据年龄筛选数据。

模型3 使用 CustomerID、年龄、性别和嵌套表,不使用筛选器。

由于以上模型使用不同的输入列,并且其中两个模型还通过应用筛选器来限制在模型中使用的数据,因此即使这些模型基于相同数据,其结果也将大不相同。请注意,CustomerID 列在所有模型中都是必需的,因为它是可作为事例键使用的唯一可用列。

通过以上说明:数据挖掘结构的基本体系结构:如何定义挖掘结构、如何用数据填充它以及如何使用它创建模型。下一篇会通过一个简单的实例来实现。

三、优缺点

(一)数据挖掘使用精心研究的统计原则来发现您的数据中的模式,帮助您针对复杂问题作出明智的决策。通过将 Analysis Services中的数据挖掘算法应用于您的数据,您可以预测趋势、标识模式、创建规则和建议、分析复杂数据集中的事件顺序以及洞察新情况。

(二)SQL Server 2014中的数据挖掘不仅功能强大和易于访问,并且与许多人在进行分析和报告工作时喜欢使用的工具集成在一起。通过查看本节中提供的链接,您可以获取在开始学习数据挖掘时需要掌握的丰富背景信息。

四、总结

通过以上简单的介绍,让我们对SSAS有了一定的了解,至于它功能的实现及各个细节比如:数据源的建立,数据视图的建立,多维数据集,多维的建立等下一篇文章通过简单的实例来讲解。


推荐阅读
  • 我在滴滴数据分析岗实习8个月的收获(文末附内推机会)
    我在滴滴数据分析岗实习8个月的收获(文末附内推机会)作者:海潮来源:数据管道大家好,我是宝器!今天分享一下交流群里海潮兄弟的「数据分析岗」求职与工作经验,以下是海潮兄弟的自诉,全文 ... [详细]
  • Python与R语言在功能和应用场景上各有优势。尽管R语言在统计分析和数据可视化方面具有更强的专业性,但Python作为一种通用编程语言,适用于更广泛的领域,包括Web开发、自动化脚本和机器学习等。对于初学者而言,Python的学习曲线更为平缓,上手更加容易。此外,Python拥有庞大的社区支持和丰富的第三方库,使其在实际应用中更具灵活性和扩展性。 ... [详细]
  • 如何撰写数据分析师(包括转行者)的面试简历?
    CDA数据分析师团队出品,作者:徐杨老师,编辑:Mika。本文将帮助您了解如何撰写一份高质量的数据分析师简历,特别是对于转行者。 ... [详细]
  • 业务团队与独立团队在数据分析领域的效能对比:谁更胜一筹?
    业务团队与独立团队在数据分析领域的效能对比:谁更胜一筹? ... [详细]
  • 如何高效启动大数据应用之旅?
    在前一篇文章中,我探讨了大数据的定义及其与数据挖掘的区别。本文将重点介绍如何高效启动大数据应用项目,涵盖关键步骤和最佳实践,帮助读者快速踏上大数据之旅。 ... [详细]
  • 探索聚类分析中的K-Means与DBSCAN算法及其应用
    聚类分析是一种用于解决样本或特征分类问题的统计分析方法,也是数据挖掘领域的重要算法之一。本文主要探讨了K-Means和DBSCAN两种聚类算法的原理及其应用场景。K-Means算法通过迭代优化簇中心来实现数据点的划分,适用于球形分布的数据集;而DBSCAN算法则基于密度进行聚类,能够有效识别任意形状的簇,并且对噪声数据具有较好的鲁棒性。通过对这两种算法的对比分析,本文旨在为实际应用中选择合适的聚类方法提供参考。 ... [详细]
  • AI TIME联合2021世界人工智能大会,共探图神经网络与认知智能前沿话题
    AI TIME携手2021世界人工智能大会,共同探讨图神经网络与认知智能的最新进展。自2018年在上海首次举办以来,WAIC已成为全球AI领域的年度盛会,吸引了众多专家学者和行业领袖参与。本次大会将聚焦图神经网络在复杂系统建模、知识图谱构建及认知智能应用等方面的技术突破和未来趋势。 ... [详细]
  • 在现代办公环境中,高效的办公软件是提升工作效能的关键。本文将推荐几款实用且专业的办公软件,帮助用户提高工作效率。首先,微软Office套件中的Word、Excel和PowerPoint依然是最常用的工具,它们凭借强大的功能和易用性,成为众多用户的首选。此外,本文还将介绍其他一些创新的办公软件,如Google Workspace和Notion,这些工具在协作和项目管理方面表现出色,值得尝试。 ... [详细]
  • 吴裕雄数据挖掘实战案例(13):GBDT模型的深入应用与解析
    #导入第三方包importpandasaspdimportmatplotlib.pyplotasplt#读入数据defaultpd.read_excel(r&# ... [详细]
  • 第五章5.4安全设备防火墙防火墙是网络关联的重要设备,用于控制网络之间的语言。外部网络用户的访问必须先经过安全策略过滤,而内部网络用户对外部网络的访 ... [详细]
  • 数据分析的4个目的3个意义,新手小白一定要看!-​如今,很多公司在招聘的时候都不约而同地对应聘者加上了一条“具备数据分析能力”的要求,这也从侧面反映了现在很多公司对数据分析非常重视 ... [详细]
  • 第三届人工智能、网络与信息技术国际学术会议(AINIT 2022)
    20223rdInternationalSeminaronArtificialIntelligence,NetworkingandInformationTechnology第三届 ... [详细]
  • 经过一年的思考,我发现自己对开发的兴趣并不浓厚,而对算法研究则更加热衷。本文将探讨开发与算法之间的本质差异,并分享我的未来学习计划。 ... [详细]
  • 本文详细介绍如何使用Netzob工具逆向未知通信协议,涵盖从基本安装到高级模糊测试的全过程。通过实例演示,帮助读者掌握Netzob的核心功能。 ... [详细]
  • 无论是在迁移到云服务还是更换云服务商的过程中,数据迁移都是一个至关重要的环节。本文将探讨数据迁移中可能遇到的问题及解决方案,包括路径问题、速度问题和数据完整性等。 ... [详细]
author-avatar
XhiaoSai_263
这个家伙很懒,什么也没留下!
PHP1.CN | 中国最专业的PHP中文社区 | DevBox开发工具箱 | json解析格式化 |PHP资讯 | PHP教程 | 数据库技术 | 服务器技术 | 前端开发技术 | PHP框架 | 开发工具 | 在线工具
Copyright © 1998 - 2020 PHP1.CN. All Rights Reserved | 京公网安备 11010802041100号 | 京ICP备19059560号-4 | PHP1.CN 第一PHP社区 版权所有