热门标签 | HotTags
当前位置:  开发笔记 > 后端 > 正文

matlab中神经网络工具箱函数汇总

1.设计函数solvein设计线性网络;solverb设计径向基网络;solverbe设计精确的径向基网络;solvehop设计Hopfi

1.设计函数

solvein    设计线性网络;                solverb   设计径向基网络;                      solverbe    设计精确的径向基网络;

solvehop  设计Hopfield网络。

 

2.传递函数

hardlim  硬限幅传递函数;            hardlims   对称硬限幅传递函数;        purelin  线性传递函数;

tansig   正切S型传递函数;                 logsig  对数S型传递函数;                   satlin  饱和线性传递函数;

satlins  对称饱和线性传递函数;        radbas   径向基传递函数;                   dist  计算矢量间的距离;

compet  自组织映射传递函数;          dpurelin  线性传递函数的导数;          dtansig   正切S型传递函数的导数;

dlogsig   对数S型传递函数的导数。

 

 3.学习规则

learnp   感知层学习规则;                         learnpn  规范感知层学习规则;             learnbp   BP学习规则;

learnbpm   带动量项的BP学习规则;     learnlm  Levenberg-Marquardt学习规则;

learnwh   Widrow-Hoff学习规则;            learnk  Kohonen学习规则;                     learncon  Conscience阈值学习函数;

learnsom  自组织映射权学习函数;        learnh  Hebb学习规则;                           learnhd  退化的Hebb学习规则;

learnis  内星学习规则;                             learnos 外星学习规则;

 

4.网络创建函数

newp  创建感知器网络;               newlind   设计一线性层;            newlin   创建一线性层;

newff   创建一前馈BP网络;         newcf   创建一多层前馈BP网络;    newfftd  创建一前馈输入延迟BP网络;

newrb  设计一径向基网络;            newrbe   设计一严格的径向基网络;     newgrnn  设计一广义回归神经网络;

newpnn     设计一概率神经网络;         newc创建一竞争层;     newsom   创建一自组织特征映射;

newhop   创建一Hopfield递归网络;     newelm  创建一Elman递归网络;

 

5.网络应用函数

sim  仿真一个神经网络;          init  初始化一个神经网络;       adapt   神经网络的自适应化;

train    训练一个神经网络。

 

6.训练函数

trainwb  网络权与阈值的训练函数;              traingd   梯度下降的BP算法训练函数;

traingdm  梯度下降w/动量的BP算法训练函数;      traingda   梯度下降w/自适应lr的BP算法训练函数;

traingdx   梯度下降w/动量和自适应lr的BP算法训练函数;    trainlm   Levenberg-Marquardt的BP算法训练函数;

trainwbl  每个训练周期用一个权值矢量或偏差矢量的训练函数;         trainc   训练竞争层;

trainfm  训练特性图;          trainlvq   训练LVQ网络;       trainelm  训练Elman递归网络;

trainbpx   利用快速传播训练网络;          trainsm 训练自组织映射网络;           trainp  利用感知层规则训练感知层;

 trainpn  利用规范感知层规则训练感知层;       trainbp   用BP算法训练前向网络;  

trainbpx  用快速BP算法训练前向网络;              trainlm   用Levenberg-Marquardt算法训练前向网络;

trainwh  用Widrow-Hoff规则训练线性层。


推荐阅读
  • Coursera ML 机器学习
    2019独角兽企业重金招聘Python工程师标准线性回归算法计算过程CostFunction梯度下降算法多变量回归![选择特征](https:static.oschina.n ... [详细]
  • 机器学习中的相似度度量与模型优化
    本文探讨了机器学习中常见的相似度度量方法,包括余弦相似度、欧氏距离和马氏距离,并详细介绍了如何通过选择合适的模型复杂度和正则化来提高模型的泛化能力。此外,文章还涵盖了模型评估的各种方法和指标,以及不同分类器的工作原理和应用场景。 ... [详细]
  • 机器学习核心概念与技术
    本文系统梳理了机器学习的关键知识点,涵盖模型评估、正则化、线性模型、支持向量机、决策树及集成学习等内容,并深入探讨了各算法的原理和应用场景。 ... [详细]
  • 本文档旨在帮助开发者回顾游戏开发中的人工智能技术,涵盖移动算法、群聚行为、路径规划、脚本AI、有限状态机、模糊逻辑、规则式AI、概率论与贝叶斯技术、神经网络及遗传算法等内容。 ... [详细]
  • 吴恩达推出TensorFlow实践课程,Python基础即可入门,四个月掌握核心技能
    量子位报道,deeplearning.ai最新发布了TensorFlow实践课程,适合希望使用TensorFlow开发AI应用的学习者。该课程涵盖机器学习模型构建、图像识别、自然语言处理及时间序列预测等多个方面。 ... [详细]
  • 强人工智能时代,区块链的角色与前景
    随着强人工智能的崛起,区块链技术在新的技术生态中扮演着怎样的角色?本文探讨了区块链与强人工智能之间的互补关系及其在未来技术发展中的重要性。 ... [详细]
  • 深入解析Android自定义View面试题
    本文探讨了Android Launcher开发中自定义View的重要性,并通过一道经典的面试题,帮助开发者更好地理解自定义View的实现细节。文章不仅涵盖了基础知识,还提供了实际操作建议。 ... [详细]
  • 1:有如下一段程序:packagea.b.c;publicclassTest{privatestaticinti0;publicintgetNext(){return ... [详细]
  • 本文介绍如何利用动态规划算法解决经典的0-1背包问题。通过具体实例和代码实现,详细解释了在给定容量的背包中选择若干物品以最大化总价值的过程。 ... [详细]
  • 本文详细探讨了Java中的24种设计模式及其应用,并介绍了七大面向对象设计原则。通过创建型、结构型和行为型模式的分类,帮助开发者更好地理解和应用这些模式,提升代码质量和可维护性。 ... [详细]
  • 本文介绍了Java并发库中的阻塞队列(BlockingQueue)及其典型应用场景。通过具体实例,展示了如何利用LinkedBlockingQueue实现线程间高效、安全的数据传递,并结合线程池和原子类优化性能。 ... [详细]
  • 本文详细介绍了Java编程语言中的核心概念和常见面试问题,包括集合类、数据结构、线程处理、Java虚拟机(JVM)、HTTP协议以及Git操作等方面的内容。通过深入分析每个主题,帮助读者更好地理解Java的关键特性和最佳实践。 ... [详细]
  • 深入解析:手把手教你构建决策树算法
    本文详细介绍了机器学习中广泛应用的决策树算法,通过天气数据集的实例演示了ID3和CART算法的手动推导过程。文章长度约2000字,建议阅读时间5分钟。 ... [详细]
  • 在金融和会计领域,准确无误地填写票据和结算凭证至关重要。这些文件不仅是支付结算和现金收付的重要依据,还直接关系到交易的安全性和准确性。本文介绍了一种使用C语言实现小写金额转换为大写金额的方法,确保数据的标准化和规范化。 ... [详细]
  • 本文探讨了卷积神经网络(CNN)中感受野的概念及其与锚框(anchor box)的关系。感受野定义了特征图上每个像素点对应的输入图像区域大小,而锚框则是在每个像素中心生成的多个不同尺寸和宽高比的边界框。两者在目标检测任务中起到关键作用。 ... [详细]
author-avatar
zongnaxxl240
这个家伙很懒,什么也没留下!
PHP1.CN | 中国最专业的PHP中文社区 | DevBox开发工具箱 | json解析格式化 |PHP资讯 | PHP教程 | 数据库技术 | 服务器技术 | 前端开发技术 | PHP框架 | 开发工具 | 在线工具
Copyright © 1998 - 2020 PHP1.CN. All Rights Reserved | 京公网安备 11010802041100号 | 京ICP备19059560号-4 | PHP1.CN 第一PHP社区 版权所有