热门标签 | HotTags
当前位置:  开发笔记 > 运维 > 正文

linux指针内存地址与64位虚拟内存上限

内存地址在0x7ff16473d000,相当于‭140,674,749,157,376‬(127T965GB(131013GB)处开始,47位最大是128TB,131072GB

  内存地址在0x7ff16473d000,相当于‭140,674,749,157,376‬(127T965GB(131013GB)处开始,47位最大是128TB,131072GB),如下,也就是在用户空间(0~0x7FFF FFFF FFFF,128GB)快顶部(差59GB)的位置。

  因为48bit空间也要满足“两头顶格”的习惯,整个可用地址范围变成了0~0x7FFF FFFF FFFF和0x8000 0000 0000~0xFFFF FFFF FFFF两个不连续的地址空间上的的几个更加离散的小岛。以首位区分或者理解为正负符号,Linux Kernel使用“1”作为系统地址空间,使用“0”作为用户地址空间(小于47bit可分配给用户空间)。

 

 

  虽然段从低到高分配,栈从高到低分配,本质上都是一样的,就像数组从头分配还是从尾分配,存储上都是从前往后,从效率角度思考的优化结论,所以指针操作都是++为主。

  上右图共享内存段中还包含了动态链接库。其二,有些地方写着共享内存段是从下往上、有些是从上往下(如上右图),但肯定有个基址(要分配两个验证下?),从实际角度来看,从上往下更合适,为什么?因为栈空间通过内核最大进程数就能估计出来,堆大小估计不出来,避免堆申请越界,所以从上往下是更合适的。

  对于linux程序而言,有一个非常重要的可执行文件格式ELF(Executable and Linkable Format),它是对象文件、可执行文件、库文件、core dump文件的格式。位于用户空间的底部,通常在启动时就确定并且不变。其组成部分从下到上为:

对可执行文件而言,主要有4部分:.text, .data, .rodata和.bss(未初始化的数据),readelf -S execname可以查看每部分的相对位置。data+bss+heap的大小由RLIMIT_DATA控制最大值。栈大小由RLIMIT_STACK控制。

(1)用户空间:0x0000_0000_0000_0000到0x0000_ffff_ffff_ffff,一共有256TB。一般只用128TB,所以只会到0x7fff ffff ffff。

(2)非规范区域

(3)内核空间:0xffff_0000_0000_0000到0xffff_ffff_ffff_ffff。一共有256TB。一般只用128TB。应用编程不可见。

  内核空间又做了如下细分:



  • vmalloc区域:0xffff_0000_0000_0000到0xffff_7bff_bfff_0000,大小为126974GB。

  • vmemmap区域:0xffff_7bff_c000_0000到0xffff_7fff_c000_0000,大小为4096GB。

  • PCI I/O区域:0xffff_7fff_ae00_0000到0xffff_7fff_be00_0000,大小为16MB。

  • Modules区域:0xffff_7fff_c000_0000到0xffff_8000_0000_0000,大小为64MB。

  • normal memory线性映射区:0xffff_8000_0000_0000到0xffff_ffff_ffff_ffff,大小为128TB。主要从这里开始。

  所以更准确的64为内存划分如下:

 

 绿色是用户区,黄色是内核态。


用户区域各部分的操作

  ELF各个部分的操作通常如下:

  交换区也是由页表管理的。

  从下可知,heap是从低到高增长,共享内存从高到低。

  

 

   0x7f开头的都是共享内存块或其中的某个变量。

  程序代码段、数据段映射到可执行文件的物理实现如下:

  

  每个程序都有起始地址、各个端的offset,重定位之后就得到运行时的绝对地址了,通过readelf可以看出。如下:

 

   虽然大多数进程不会访问同一虚拟内存,但是也是可以的,例如进程间通信常用的共享内存技术。如下:

  

 


内存子系统如何确定malloc、mmap、shm、程序启动地址内存的地址

  待续。。  


虚拟地址到物理地址的转换

   待续

参考:https://zhuanlan.zhihu.com/p/81399122

LightDB Enterprise Postgres--金融级关系型数据库,更快、更稳、更懂金融!



推荐阅读
  • 本文详细介绍如何使用Python进行配置文件的读写操作,涵盖常见的配置文件格式(如INI、JSON、TOML和YAML),并提供具体的代码示例。 ... [详细]
  • 深入解析 HDFS Federation:多命名空间架构详解
    HDFS Federation 是一种扩展 HDFS 架构的方式,通过引入多个独立的 NameNode 来解决单点故障和性能瓶颈问题。本文将详细探讨 HDFS Federation 的工作原理、优势以及潜在挑战。 ... [详细]
  • CentOS7源码编译安装MySQL5.6
    2019独角兽企业重金招聘Python工程师标准一、先在cmake官网下个最新的cmake源码包cmake官网:https:www.cmake.org如此时最新 ... [详细]
  • 本文详细介绍了 Dockerfile 的编写方法及其在网络配置中的应用,涵盖基础指令、镜像构建与发布流程,并深入探讨了 Docker 的默认网络、容器互联及自定义网络的实现。 ... [详细]
  • 掌握Linux:基础命令入门
    本章节深入浅出地介绍了Linux系统中的基本命令操作,帮助读者快速上手并理解其核心功能。 ... [详细]
  • 解决Linux系统中pygraphviz安装问题
    本文探讨了在Linux环境下安装pygraphviz时遇到的常见问题,并提供了详细的解决方案和最佳实践。 ... [详细]
  • 本文介绍了一款用于自动化部署 Linux 服务的 Bash 脚本。该脚本不仅涵盖了基本的文件复制和目录创建,还处理了系统服务的配置和启动,确保在多种 Linux 发行版上都能顺利运行。 ... [详细]
  • 在哈佛大学商学院举行的Cyberposium大会上,专家们深入探讨了开源软件的崛起及其对企业市场的影响。会议指出,开源软件不仅为企业提供了新的增长机会,还促进了软件质量的提升和创新。 ... [详细]
  • CMake跨平台开发实践
    本文介绍如何使用CMake支持不同平台的代码编译。通过一个简单的示例,我们将展示如何编写CMakeLists.txt以适应Linux和Windows平台,并实现跨平台的函数调用。 ... [详细]
  • 在Linux系统中配置并启动ActiveMQ
    本文详细介绍了如何在Linux环境中安装和配置ActiveMQ,包括端口开放及防火墙设置。通过本文,您可以掌握完整的ActiveMQ部署流程,确保其在网络环境中正常运行。 ... [详细]
  • 如何配置Unturned服务器及其消息设置
    本文详细介绍了Unturned服务器的配置方法和消息设置技巧,帮助用户了解并优化服务器管理。同时,提供了关于云服务资源操作记录、远程登录设置以及文件传输的相关补充信息。 ... [详细]
  • 在Ubuntu 16.04 LTS上配置Qt Creator开发环境
    本文详细介绍了如何在Ubuntu 16.04 LTS系统中安装和配置Qt Creator,涵盖了从下载到安装的全过程,并提供了常见问题的解决方案。 ... [详细]
  • 本文深入探讨了Linux系统中网卡绑定(bonding)的七种工作模式。网卡绑定技术通过将多个物理网卡组合成一个逻辑网卡,实现网络冗余、带宽聚合和负载均衡,在生产环境中广泛应用。文章详细介绍了每种模式的特点、适用场景及配置方法。 ... [详细]
  • 本文详细介绍了如何在 Linux 平台上安装和配置 PostgreSQL 数据库。通过访问官方资源并遵循特定的操作步骤,用户可以在不同发行版(如 Ubuntu 和 Red Hat)上顺利完成 PostgreSQL 的安装。 ... [详细]
  • 掌握远程执行Linux脚本和命令的技巧
    本文将详细介绍如何利用Python的Paramiko库实现远程执行Linux脚本和命令,帮助读者快速掌握这一实用技能。通过具体的示例和详尽的解释,让初学者也能轻松上手。 ... [详细]
author-avatar
mobiledu2502875993
这个家伙很懒,什么也没留下!
PHP1.CN | 中国最专业的PHP中文社区 | DevBox开发工具箱 | json解析格式化 |PHP资讯 | PHP教程 | 数据库技术 | 服务器技术 | 前端开发技术 | PHP框架 | 开发工具 | 在线工具
Copyright © 1998 - 2020 PHP1.CN. All Rights Reserved | 京公网安备 11010802041100号 | 京ICP备19059560号-4 | PHP1.CN 第一PHP社区 版权所有