热门标签 | HotTags
当前位置:  开发笔记 > 程序员 > 正文

相同周长的图形,面积最大者是圆

等周定理[编辑]维基百科,自由的百科全书跳转至:导航、搜索等周定理,又称等周


等周定理[编辑]

维基百科,自由的百科全书
跳转至: 导航、 搜索

等周定理,又称等周不等式,是一个几何中的不等式定理,说明了欧几里得平面上的封闭图形的周长以及其面积之间的关系。其中的“等周”指的是周界的长度相等。等周定理说明在周界长度相等的封闭几何形状之中,以圆形的面积最大;另一个说法是面积相等的几何形状之中,以圆形的周界长度最小。这两种说法是等价的。它可以以不等式表达:若P为封闭曲线的周界长,A为曲线所包围的区域面积,4 \pi A \le P^2

虽然等周定理的结论早已为人所知,但要严格的证明这一点并不容易。首个严谨的数学证明直到19世纪才出现。之后,数学家们陆续给出了不同的证明,其中有不少是非常简单的。等周问题有许多不同的推广,例如在各种曲面而不是平面上的等周问题,以及在高维的空间中给定的“表面”或区域的最大“边界长度”问题等。

在物理中,等周问题和跟所谓的最小作用量原理有关。一个直观的表现就是水珠的形状。在没有外力的情况下(例如失重的太空舱里),水珠的形状是完全对称的球体。这是因为当水珠体积一定时,表面张力会迫使水珠的表面积达到最小值。根据等周定理,最小值是在水珠形状为球状时达到。

历史[编辑]

不完全 凸的封闭曲线的话,能以“翻折” 凹的部分以成为凸的图形,以增加面积,而周长不变
一个狭长的图形可以通过“压扁”来变得“更圆”,从而使得面积更大而周长不变。

平面上的等周问题是等周问题最经典的形式,它的出现可以追溯到很早以前。这个问题可以被表述为:在平面上所有周长一定的封闭曲线中,是否有一个围成的面积最大?如果有的话,是什么形状?另一种等价的表述是:当平面上的封闭曲线围成的面积一定时,怎样的曲线周长最小?

虽然圆看似是问题的表面答案,但证明此事实其实不易。首个接近答案的步骤出现在1838年——雅各·史坦纳以几何方法证明若答案存在,答案必然是圆形[1]。不久之后他的证明被其他数学家完善。

其方法包括证明了不完全凸的封闭曲线的话,能以“翻折”凹的部分以成为凸的图形,以增加面积;不完全对称的封闭曲线能以倾斜来取得更多的面积。圆,是完全凸和对称的形状。可是这些并不足以作为等周定理的严格证明。

1901年,赫尔维茨凭傅里叶级数和格林定理给出一个纯解析的证明。

证明[编辑]

以下给出一个较初等的证明[2],分5步。

设一条长度为P的封闭曲线围成的区域的最大面积为A,亦以A、P来标记该区域及其边界;那么该图形应当满足如下性质:

1、A是一个凸区域。

  • 假使不然,A是一个凹区域。那么根据定义,可以在P内找到两个点M和N,使其连线MN有一部份M'N'不包含于A的内部。然而如以M'N'替换掉原来的那段弧,则周长将减少,面积将增加,从而将新图形扩大若干倍后得到一个同样周长,面积比A大的区域。矛盾。

2、凡平分周长P的弦必平分面积A。

  • 如果一弦MN平分P而将A分为大小不同的两部份A_1>A_2,那么去掉A_2而将A_1对MN做对称,则可得到一个周长仍然等于P而面积等于2A_1 > A_1 + A_2 = A的区域,矛盾。

3、凡平分A的弦,无论方向,长度相等。

  • 如果不然,不妨设两弦MN和M'N'均平分面积A而MN>M'N'。那么分别选取MN及其任一侧的曲线(半个P,不妨记为P_1),以及M'N'及其任一侧的区域(另行划分的半个P,记为P'_1),并粘合在一起使得M'N'落在MN上,M与M'重合。
    • 此时,新的图形仍然满足周长为P,面积为A的性质,且由于MN>M'N',N'应落于MN之间。
  • 以M为中心,分别对P_1P'_1\lambda\mu倍的放缩,使两曲线的终端吻合(即N和N'经过变换之后重合,记为N''),得到两个分别与原区域相似的区域Q_1Q'_1。适当调整\lambda\mu的值,使曲线M Q_1 N'' Q'_1 M的周长仍为P。
    • 此时Q_1Q'_1的长度分别等于P \lambda /2P \mu /2,所围的面积分别等于A \lambda^2 /2A \mu^2 /2;并且由于MN和MN'经过放缩后重合,有\lambda MN = \mu MN'
  • 由于曲线M Q_1 N'' Q'_1 M的周长仍为P,故P \lambda /2 + P \mu /2 = P,从而\lambda + \mu = 2;而由\lambda MN = \mu MN', MN>MN'0<\lambda <1
  • 所以,M Q_1 N'' Q'_1 M的面积为A (\lambda^2 + \mu^2) /2 = A (\lambda^2 + (2 - \lambda)^2) /2 = A(\lambda^2 - 2\lambda + 2) > A,与A最大矛盾。

4、若MN平分A,O为MN中点,那么对P上任意一点R,都有OM=ON=OR。

  • 以O为中心,做MRN的中心对称图形,R对称到R';那么图形MR'NRM的周长为P,面积为A。由第3步知MN和RR'的长度应该相等,而O也是RR'的中点,故得结论。

5、由于O到P上任意一点的距离都相等,所以P是圆。

参考来源[编辑]

  1. ^ J. Steiner, Einfacher Beweis der isoperimetrischen Hauptsätze, J. reine angew Math. 18, (1838), pp. 281–296; and Gesammelte Werke Vol. 2, pp. 77–91, Reimer, Berlin, (1882).
  2. ^ 福原満洲雄、山中健,変分学入门,朝仓书店,1978.3.


推荐阅读
  • 1:有如下一段程序:packagea.b.c;publicclassTest{privatestaticinti0;publicintgetNext(){return ... [详细]
  • 1.如何在运行状态查看源代码?查看函数的源代码,我们通常会使用IDE来完成。比如在PyCharm中,你可以Ctrl+鼠标点击进入函数的源代码。那如果没有IDE呢?当我们想使用一个函 ... [详细]
  • 如何在PHPCMS V9中实现多站点功能并配置独立域名与动态URL
    本文介绍如何在PHPCMS V9中创建和管理多个站点,包括配置独立域名、设置动态URL,并确保各子站能够正常运行。我们将详细讲解从新建站点到最终配置路由的每一步骤。 ... [详细]
  • 本文详细解析了Python中的os和sys模块,介绍了它们的功能、常用方法及其在实际编程中的应用。 ... [详细]
  • 离线环境下的Python及其第三方库安装指南
    在项目开发中,有时会遇到电脑只能连接内网或完全无法联网的情况。本文将详细介绍如何在这种环境下安装Python及其所需的第三方库,确保开发工作的顺利进行。 ... [详细]
  • 掌握远程执行Linux脚本和命令的技巧
    本文将详细介绍如何利用Python的Paramiko库实现远程执行Linux脚本和命令,帮助读者快速掌握这一实用技能。通过具体的示例和详尽的解释,让初学者也能轻松上手。 ... [详细]
  • 本文将详细介绍在Windows 7环境下,检查U盘启动盘是否制作成功的多种方法,包括通过BIOS设置和使用模拟启动工具。 ... [详细]
  • 深入理解 H5C3 和 JavaScript 核心问题
    本文详细探讨了 H5C3 和 JavaScript 中的一些核心编程问题,通过实例解析和代码示例,帮助开发者更好地理解和应用这些技术。 ... [详细]
  • 利用存储过程构建年度日历表的详细指南
    本文将介绍如何使用SQL存储过程创建一个完整的年度日历表。通过实例演示,帮助读者掌握存储过程的应用技巧,并提供详细的代码解析和执行步骤。 ... [详细]
  • 本文详细介绍了macOS系统的核心组件,包括如何管理其安全特性——系统完整性保护(SIP),并探讨了不同版本的更新亮点。对于使用macOS系统的用户来说,了解这些信息有助于更好地管理和优化系统性能。 ... [详细]
  • 使用Vultr云服务器和Namesilo域名搭建个人网站
    本文详细介绍了如何通过Vultr云服务器和Namesilo域名搭建一个功能齐全的个人网站,包括购买、配置服务器以及绑定域名的具体步骤。文章还提供了详细的命令行操作指南,帮助读者顺利完成建站过程。 ... [详细]
  • 近期遇到电脑网络不稳定和游戏时频繁重启的问题,寻求专业建议。网络环境为ADSL调制解调器通过路由器共享给两台电脑使用,怀疑存在ARP攻击或硬件配置问题。希望获得详细的故障排查和解决方案。 ... [详细]
  • Hadoop入门与核心组件详解
    本文详细介绍了Hadoop的基础知识及其核心组件,包括HDFS、MapReduce和YARN。通过本文,读者可以全面了解Hadoop的生态系统及应用场景。 ... [详细]
  • 百度服务再次遭遇技术问题,疑似DNS解析故障
    近日晚间,百度多项在线服务出现加载异常,包括移动端搜索在内的多个功能受到影响。初步迹象表明,问题可能与DNS服务器解析有关。 ... [详细]
  • CATSearch是一个针对CATIA V5和3DEXPERIENCE平台的开源二次开发项目,由硬核小青年发起并维护。该项目旨在解决3DE搜索功能不稳定的问题,通过API调用提供更快速、准确的搜索体验。本文将详细介绍该插件的功能及使用方法。 ... [详细]
author-avatar
仲颖凯翰奕颖
这个家伙很懒,什么也没留下!
PHP1.CN | 中国最专业的PHP中文社区 | DevBox开发工具箱 | json解析格式化 |PHP资讯 | PHP教程 | 数据库技术 | 服务器技术 | 前端开发技术 | PHP框架 | 开发工具 | 在线工具
Copyright © 1998 - 2020 PHP1.CN. All Rights Reserved | 京公网安备 11010802041100号 | 京ICP备19059560号-4 | PHP1.CN 第一PHP社区 版权所有