热门标签 | HotTags
当前位置:  开发笔记 > 编程语言 > 正文

flume安装和使用flume1.5传输数据(日志)到hadoop2.2

安装flume1.51.下载安装包(1)官网下载apache-flume-1.5.0-bin.tar.gzapache-flume-1.5.0-src

安装flume1.5

1.下载安装包
(1)官网下载
apache-flume-1.5.0-bin.tar.gz
apache-flume-1.5.0-src.tar.gz
(2)百度网盘下载
链接: http://pan.baidu.com/s/1dDip8RZ 密码: 268r

我们走到这一步,我们会想到一个问题,我的电脑是32位的,不知道能否安装?如果我的电脑是64位的,能否安装。之前我们装的hadoop就分为32位和64位,想到这个问题是正常的,但是这里不用担心,因为我们下载的是二进制包,也就是说你32位和64位都可以安装。




2.分别解压:

下载之后,我们看到下面两个包:


(1)上传Linux


 



上面两个包,可以下载到window,然后通过WinSCP上传。


(2)解压包




解压apache-flume-1.5.0-bin.tar.gz,
解压到usr文件夹下面


  1. sudo tar zxvf apache-flume-1.5.0-bin.tar.gz


 







解压apache-flume-1.5.0-src.tar.gz,
解压到usr文件夹下面


  1. sudo tar zxvf apache-flume-1.5.0-src.tar.gz


 





(3) src里面文件内容,覆盖解压后bin文件里面的内容

  1. sudo cp -ri apache-flume-1.5.0-src/* apache-flume-1.5.0-bin


 





(4)重命名


  1. mv apache-flume-1.5.0-bin/ flume


 





3.配置环境变量:


 





配置环境变量生效


  1. source /etc/environment




3.建立配置文件


这里面的配置文件还是比较特别的,不同于以往我们安装的软件,我们这里可以自己建立配置文件。


首先我们建立一个 example文件
  1. vi example




,然后把下面内容,粘帖到里面就可以了,注意不要有乱码,有乱码的话,可以直接创建一个文件,然后上传。方法也有很多,能解决就好。




对于下面红字部分,记得创建
文件夹
,并且注意他们的权限一致,这个比较简单的,就不在书写了。对于下面的配置项,可以参考
flume参考文档
,这里面的参数很详细。




agent1表示代理名称
agent1.sources=source1
agent1.sinks=sink1
agent1.channels=channel1


#配置source1
agent1.sources.source1.type=spooldir
agent1.sources.source1.spoolDir=/usr/aboutyunlog
agent1.sources.source1.channels=channel1
agent1.sources.source1.fileHeader = false

#配置sink1
agent1.sinks.sink1.type=hdfs
agent1.sinks.sink1.hdfs.path=hdfs://master:8020/aboutyunlog
agent1.sinks.sink1.hdfs.fileType=DataStream
agent1.sinks.sink1.hdfs.writeFormat=TEXT
agent1.sinks.sink1.hdfs.rollInterval=4
agent1.sinks.sink1.channel=channel1


#配置channel1
agent1.channels.channel1.type=file
agent1.channels.channel1.checkpointDir=/usr/aboutyun_tmp123
agent1.channels.channel1.dataDirs=/usr/aboutyun_tmp




 







4.启动flume


flume-ng agent -n agent1 -c conf -f /usr/flume/conf/example -Dflume.root.logger=DEBUG,console




上面注意红字部分,是我们自己建立的文件,而对于绿色部分,则是输出调试信息,也可以在配置文件中配置。






5.我们启动flume之后


会看到下面信息,并且信息不停的重复。这个其实是在
空文件的时候,
监控的信息输出。


 







一旦有文件输入,我们会看到下面信息。


注意:这个不要关闭,我们另外开启一个shell,在监控文件夹中放入要上传的文件




比如我们在监控文件夹下,创建一个test1文件,内容如下


 





这时候flume监控shell,会有相应的如下下面变化


2014-06-02 12:01:04,066 (pool-6-thread-1) [INFO - org.apache.flume.client.avro.ReliableSpoolingFileEventReader.rollCurrentFile(ReliableSpoolingFileEventReader.java:332)] Preparing to move file /usr/aboutyunlog/test1 to /usr/aboutyunlog/test1.COMPLETED
2014-06-02 12:01:04,070 (pool-6-thread-1) [ERROR - org.apache.flume.source.SpoolDirectorySource$SpoolDirectoryRunnable.run(SpoolDirectorySource.java:256)] FATAL: Spool Directory source source1: { spoolDir: /usr/aboutyunlog }: Uncaught exception in SpoolDirectorySource thread. Restart or reconfigure Flume to continue processing.
java.lang.IllegalStateException: File name has been re-used with different files. Spooling assumptions violated for /usr/aboutyunlog/test1.COMPLETED
at org.apache.flume.client.avro.ReliableSpoolingFileEventReader.rollCurrentFile(ReliableSpoolingFileEventReader.java:362)
at org.apache.flume.client.avro.ReliableSpoolingFileEventReader.retireCurrentFile(ReliableSpoolingFileEventReader.java:314)
at org.apache.flume.client.avro.ReliableSpoolingFileEventReader.readEvents(ReliableSpoolingFileEventReader.java:243)
at org.apache.flume.source.SpoolDirectorySource$SpoolDirectoryRunnable.run(SpoolDirectorySource.java:227)
at java.util.concurrent.Executors$RunnableAdapter.call(Executors.java:471)
at java.util.concurrent.FutureTask.runAndReset(FutureTask.java:304)
at java.util.concurrent.ScheduledThreadPoolExecutor$ScheduledFutureTask.access$301(ScheduledThreadPoolExecutor.java:178)
at java.util.concurrent.ScheduledThreadPoolExecutor$ScheduledFutureTask.run(ScheduledThreadPoolExecutor.java:293)
at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1145)
at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:615)
at java.lang.Thread.run(Thread.java:744)
2014-06-02 12:01:07,749 (SinkRunner-PollingRunner-DefaultSinkProcessor) [INFO - org.apache.flume.sink.hdfs.HDFSDataStream.configure(HDFSDataStream.java:58)] Serializer = TEXT, UseRawLocalFileSystem = false
2014-06-02 12:01:07,803 (SinkRunner-PollingRunner-DefaultSinkProcessor) [INFO - org.apache.flume.sink.hdfs.BucketWriter.open(BucketWriter.java:261)] Creating hdfs://master:8020/aboutyunlog/FlumeData.1401681667750.tmp
2014-06-02 12:01:07,871 (hdfs-sink1-call-runner-2) [DEBUG - org.apache.flume.sink.hdfs.AbstractHDFSWriter.reflectGetNumCurrentReplicas(AbstractHDFSWriter.java:195)] Using getNumCurrentReplicas--HDFS-826
2014-06-02 12:01:07,871 (hdfs-sink1-call-runner-2) [DEBUG - org.apache.flume.sink.hdfs.AbstractHDFSWriter.reflectGetDefaultReplication(AbstractHDFSWriter.java:223)] Using FileSystem.getDefaultReplication(Path) from HADOOP-8014
2014-06-02 12:01:10,945 (Log-BackgroundWorker-channel1) [INFO - org.apache.flume.channel.file.EventQueueBackingStoreFile.beginCheckpoint(EventQueueBackingStoreFile.java:214)] Start checkpoint for /usr/aboutyun_tmp123/checkpoint, elements to sync = 3
2014-06-02 12:01:10,949 (Log-BackgroundWorker-channel1) [INFO - org.apache.flume.channel.file.EventQueueBackingStoreFile.checkpoint(EventQueueBackingStoreFile.java:239)] Updating checkpoint metadata: logWriteOrderID: 1401681430998, queueSize: 0, queueHead: 11
2014-06-02 12:01:10,952 (Log-BackgroundWorker-channel1) [INFO - org.apache.flume.channel.file.Log.writeCheckpoint(Log.java:1005)] Updated checkpoint for file: /usr/aboutyun_tmp/log-8 position: 2482 logWriteOrderID: 1401681430998
2014-06-02 12:01:10,953 (Log-BackgroundWorker-channel1) [DEBUG - org.apache.flume.channel.file.Log.removeOldLogs(Log.java:1067)] Files currently in use: [8]
2014-06-02 12:01:11,872 (hdfs-sink1-roll-timer-0) [DEBUG - org.apache.flume.sink.hdfs.BucketWriter$2.call(BucketWriter.java:303)] Rolling file (hdfs://master:8020/aboutyunlog/FlumeData.1401681667750.tmp): Roll scheduled after 4 sec elapsed.
2014-06-02 12:01:11,873 (hdfs-sink1-roll-timer-0) [INFO - org.apache.flume.sink.hdfs.BucketWriter.close(BucketWriter.java:409)] Closing hdfs://master:8020/aboutyunlog/FlumeData.1401681667750.tmp
2014-06-02 12:01:11,873 (hdfs-sink1-call-runner-7) [INFO - org.apache.flume.sink.hdfs.BucketWriter$3.call(BucketWriter.java:339)] Close tries incremented
2014-06-02 12:01:11,895 (hdfs-sink1-call-runner-8) [INFO - org.apache.flume.sink.hdfs.BucketWriter$8.call(BucketWriter.java:669)] Renaming hdfs://master:8020/aboutyunlog/FlumeData.1401681667750.tmp to hdfs://master:8020/aboutyunlog/FlumeData.1401681667750
2014-06-02 12:01:11,897 (hdfs-sink1-roll-timer-0) [INFO - org.apache.flume.sink.hdfs.HDFSEventSink$1.run(HDFSEventSink.java:402)] Writer callback called.
2014-06-02 12:01:12,423 (conf-file-poller-0) [DEBUG - org.apache.flume.node.PollingPropertiesFileConfigurationProvider$FileWatcherRunnable.run(PollingPropertiesFileConfigurationProvider.java:126)] Checking file:conf/example for changes
2014-06-02 12:01:40,953 (Log-BackgroundWorker-channel1) [DEBUG - org.apache.flume.channel.file.FlumeEventQueue.checkpoint(FlumeEventQueue.java:137)] Checkpoint not required




上传成功之后,我们去hdfs上,查看上传文件:


 







这样我们做到了flume上传到hadoop2.2。




完毕



推荐阅读
  • 深入理解:AJAX学习指南
    本文详细探讨了AJAX的基本概念、工作原理及其在现代Web开发中的应用,旨在为初学者提供全面的学习资料。 ... [详细]
  • 尽管在WPF中工作了一段时间,但在菜单控件的样式设置上遇到了一些基础问题,特别是关于如何正确配置前景色和背景色。 ... [详细]
  • 本文介绍如何通过整合SparkSQL与Hive来构建高效的用户画像环境,提高数据处理速度和查询效率。 ... [详细]
  • JavaScript 跨域解决方案详解
    本文详细介绍了JavaScript在不同域之间进行数据传输或通信的技术,包括使用JSONP、修改document.domain、利用window.name以及HTML5的postMessage方法等跨域解决方案。 ... [详细]
  • ASP.NET 进度条实现详解
    本文介绍了如何在ASP.NET中使用HTML和JavaScript创建一个动态更新的进度条,并通过Default.aspx页面进行展示。 ... [详细]
  • 本文探讨了如何在PHP与MySQL环境中实现高效的分页查询,包括基本的分页实现、性能优化技巧以及高级的分页策略。 ... [详细]
  • 本文探讨了如何通过优化 DOM 操作来提升 JavaScript 的性能,包括使用 `createElement` 函数、动画元素、理解重绘事件及处理鼠标滚动事件等关键主题。 ... [详细]
  • 本文详细介绍了如何在Oracle VM VirtualBox中实现主机与虚拟机之间的数据交换,包括安装Guest Additions增强功能,以及如何利用这些功能进行文件传输、屏幕调整等操作。 ... [详细]
  • Windows Phone 弹出窗口实现方案
    在当前版本的 Silverlight for Windows Phone 中,由于缺乏对 ChildWindow 的支持,开发者需要采用其他方法来实现弹出窗口的功能。本文将探讨几种有效的解决方案。 ... [详细]
  • 理解浏览器历史记录(2)hashchange、pushState
    阅读目录1.hashchange2.pushState本文也是一篇基础文章。继上文之后,本打算去研究pushState,偶然在一些信息中发现了锚点变 ... [详细]
  • 流处理中的计数挑战与解决方案
    本文探讨了在流处理中进行计数的各种技术和挑战,并基于作者在2016年圣何塞举行的Hadoop World大会上的演讲进行了深入分析。文章不仅介绍了传统批处理和Lambda架构的局限性,还详细探讨了流处理架构的优势及其在现代大数据应用中的重要作用。 ... [详细]
  • 本文详细介绍了如何在Android L版本中应用Material Design的主题和布局,包括Material主题的应用方法、自定义主题和颜色方案、状态栏和导航条的自定义,以及Material Design布局的特点和兼容性处理。 ... [详细]
  • 大数据领域的职业路径与角色解析
    本文将深入探讨大数据领域的各种职业和工作角色,帮助读者全面了解大数据行业的需求、市场趋势,以及从入门到高级专业人士的职业发展路径。文章还将详细介绍不同公司对大数据人才的需求,并解析各岗位的具体职责、所需技能和经验。 ... [详细]
  • 本文介绍了如何使用Flume从Linux文件系统收集日志并存储到HDFS,然后通过MapReduce清洗数据,使用Hive进行数据分析,并最终通过Sqoop将结果导出到MySQL数据库。 ... [详细]
  • Hadoop的文件操作位于包org.apache.hadoop.fs里面,能够进行新建、删除、修改等操作。比较重要的几个类:(1)Configurati ... [详细]
author-avatar
姚扰腾
这个家伙很懒,什么也没留下!
PHP1.CN | 中国最专业的PHP中文社区 | DevBox开发工具箱 | json解析格式化 |PHP资讯 | PHP教程 | 数据库技术 | 服务器技术 | 前端开发技术 | PHP框架 | 开发工具 | 在线工具
Copyright © 1998 - 2020 PHP1.CN. All Rights Reserved | 京公网安备 11010802041100号 | 京ICP备19059560号-4 | PHP1.CN 第一PHP社区 版权所有