热门标签 | HotTags
当前位置:  开发笔记 > 编程语言 > 正文

ffplay外部时钟同步的原理

概述ffplay有三种同步方式:1、音频作为主时钟;2、视频作为主时钟;3、外部时钟源作为主时钟。默认的同步方式为“音频作为主时钟”方式,具体代码分析可查阅:https:blog.

概述

ffplay有三种同步方式:1、音频作为主时钟;2、视频作为主时钟;3、外部时钟源作为主时钟。默认的同步方式为“音频作为主时钟”方式,具体代码分析可查阅:https://blog.csdn.net/lyy901135/article/details/95307111

音频作为主时钟时,视频pts向音频的pts看齐,若视频播放延迟,则需进行丢帧处理。视频作为主时钟时,音频需向视频的pts看齐,要音频播放延迟/超前,则需对音频样本进行缩放。本文主要介绍第三种同步方式:外部时钟源作为主时钟。

视频同步方式的选择

使用ffplay的-sync参数可指定音视频同步的种类,比如如下命令选择外部时钟作为主时钟。

ffplay ~/Videos/Sintel.2010.720p.mkv -sync ext

原理说明

外部时钟更新的时机

初始时,外部时钟源pts初始化为NAN,后续该外部时钟源的字段的更新都是通过sync_clock_to_slave()完成。音频或视频帧在分别更新自己对应的时钟时,也会调用sync_clock_to_slave()尝试对外部时钟做更新。

为何上文说是尝试对外部时钟进行更新?是因为在sync_clock_to_slave()代码中我们可以看到更新规则:

1、外部时钟pts非法,从属时钟(音频/视频)的pts有效时更新。
2、外部时钟pts与从属时钟的时间差值超过AV_NOSYNC_THRESHOLD(10秒),则对外部时钟进行更新。

static void sync_clock_to_slave(Clock *c, Clock *slave)
{
double clock = get_clock(c);
double slave_clock = get_clock(slave);
/* 仅当下列条件满足时,才会更新外部时钟 */
if (!isnan(slave_clock) && (isnan(clock) || fabs(clock - slave_clock) > AV_NOSYNC_THRESHOLD))
set_clock(c, slave_clock, slave->serial);
}

由于外部时钟初始化时为NAN,因此第一帧音频(视频)播放时,会满足第1个条件,从而调用set_clock()更新了外部时钟。我们展开函数进行分析可知,第一帧有效帧播放后,外部时钟的字段分别对应的值(如下代码注释)

static void set_clock_at(Clock *c, double pts, int serial, double time)
{
/* 第一个有效帧对应的pts,以音频为例,此时对应的就是第一帧播放时,音频clock的时间值 */
c->pts = pts; /* 第一帧有效帧播放时的系统时间 */
c->last_updated = time; /* 当前时刻,外部时钟的时间值(pts)与系统时间值之差 * 一定注意是当前时刻,后续时间点计算都是根据此值作为基准来计算。 * 每隔10秒才会更新这个基准时间。 */
c->pts_drift = c->pts - time;
c->serial = serial;
}
static void set_clock(Clock *c, double pts, int serial)
{
double time = av_gettime_relative() / 1000000.0;
set_clock_at(c, pts, serial, time);
}

函数sync_clock_to_slave()被调用的地方:

static void update_video_pts(VideoState *is, double pts, int64_t pos, int serial) {
/* update current video pts */
set_clock(&is->vidclk, pts, serial);
/* 视频时钟更新时,尝试更新外部时钟 */
sync_clock_to_slave(&is->extclk, &is->vidclk);
}

/* prepare a new audio buffer */
static void sdl_audio_callback(void *opaque, Uint8 *stream, int len)
{
............ /* Let's assume the audio driver that is used by SDL has two periods. */
if (!isnan(is->audio_clock)) {
set_clock_at(&is->audclk, is->audio_clock - (double)(2 * is->audio_hw_buf_size + is->audio_write_buf_size) / is->audio_tgt.bytes_per_sec, is->audio_clock_serial, audio_callback_time / 1000000.0);
/* 音频时钟更新时,尝试更新外部时钟 */
sync_clock_to_slave(&is->extclk, &is->audclk);
}
}

外部时钟时间轴特性

了解到外部时钟更新时机,笔者就很迷惑了。既然作为同步的基准时间轴,那肯定要不停的增长,而且这个增长还必须是有规律的(比如像自然时间一样,一秒一秒的增长)。但是刚才看到确实是每隔10秒才更新一次外部时间,那这10秒内的音视频要怎么同步?

带着这个疑问,我们分别看下视频与音频如何与主时钟进行同步,首先是视频同步的代码,具体同步原理可参见:https://blog.csdn.net/lyy901135/article/details/95307111

static double compute_target_delay(double delay, VideoState *is)
{
double sync_threshold, diff = 0;
/* update delay to follow master synchronisation source */
if (get_master_sync_type(is) != AV_SYNC_VIDEO_MASTER) {
/* if video is slave, we try to correct big delays by duplicating or deleting a frame */
/* 与主时钟对比,获取时间差 */
diff = get_clock(&is->vidclk) - get_master_clock(is);
........
}
........
}

音频同步代码如下,根据与主时钟的差距,计算出当前需要多少帧音频样本,然后根据这个计算所得的音频样本数,对原始音频进行缩放。

/* return the wanted number of samples to get better sync if sync_type is video * or external master clock */
static int synchronize_audio(VideoState *is, int nb_samples)
{
int wanted_nb_samples = nb_samples;
/* if not master, then we try to remove or add samples to correct the clock */
if (get_master_sync_type(is) != AV_SYNC_AUDIO_MASTER) {
............

/* 与主时钟对比,获取时间差 */
diff = get_clock(&is->audclk) - get_master_clock(is);

.........
}
return wanted_nb_samples;
}

上面均调用了get_master_clock来获取此时主时钟的时间值,当前主时钟为外部时钟。我们继续看下这个时间值是怎么计算的。从下面代码可以看出整个原理,其实外部时钟就是一开始记录了第一帧的pts,以及第一帧的系统时间(假定为T0,则代码中pts_drift = pts-T0)。如果当前时钟假定为T1,那么此时主时钟的时间就应该为

pts + (T1 – T0) = (pts – T0) + T1 = pts_drift + T1

T1-T0表示用系统时间,计算从开始到现在的总时长。pts表示第一帧播放的时刻,那么pts+T1-T0,就表示当前时刻的pts值,这个值则可以用于音频/视频的clock对比。

/* get the current master clock value */
static double get_master_clock(VideoState *is)
{
double val;
switch (get_master_sync_type(is)) {
case AV_SYNC_VIDEO_MASTER:
val = get_clock(&is->vidclk);
break;
case AV_SYNC_AUDIO_MASTER:
val = get_clock(&is->audclk);
break;
default:
val = get_clock(&is->extclk);
break;
}
return val;
}

static double get_clock(Clock *c)
{
if (*c->queue_serial != c->serial)
return NAN;
if (c->paused) {
return c->pts;
} else {
double time = av_gettime_relative() / 1000000.0;
return c->pts_drift + time - (time - c->last_updated) * (1.0 - c->speed);
}
}

推荐阅读
  • 深入剖析Java中SimpleDateFormat在多线程环境下的潜在风险与解决方案
    深入剖析Java中SimpleDateFormat在多线程环境下的潜在风险与解决方案 ... [详细]
  • 本文详细介绍了在 Android 7.1 系统中调整屏幕分辨率和默认音量设置的方法。针对系统默认音量过大的问题,提供了具体的步骤来降低系统、铃声、媒体和闹钟的默认音量,以提升用户体验。此外,还涵盖了如何通过系统设置或使用第三方工具来优化屏幕分辨率,确保设备显示效果更加清晰和流畅。 ... [详细]
  • 如何将TS文件转换为M3U8直播流:HLS与M3U8格式详解
    在视频传输领域,MP4虽然常见,但在直播场景中直接使用MP4格式存在诸多问题。例如,MP4文件的头部信息(如ftyp、moov)较大,导致初始加载时间较长,影响用户体验。相比之下,HLS(HTTP Live Streaming)协议及其M3U8格式更具优势。HLS通过将视频切分成多个小片段,并生成一个M3U8播放列表文件,实现低延迟和高稳定性。本文详细介绍了如何将TS文件转换为M3U8直播流,包括技术原理和具体操作步骤,帮助读者更好地理解和应用这一技术。 ... [详细]
  • Android 构建基础流程详解
    Android 构建基础流程详解 ... [详细]
  • 在Android平台中,播放音频的采样率通常固定为44.1kHz,而录音的采样率则固定为8kHz。为了确保音频设备的正常工作,底层驱动必须预先设定这些固定的采样率。当上层应用提供的采样率与这些预设值不匹配时,需要通过重采样(resample)技术来调整采样率,以保证音频数据的正确处理和传输。本文将详细探讨FFMpeg在音频处理中的基础理论及重采样技术的应用。 ... [详细]
  • 在Android应用开发中,实现与MySQL数据库的连接是一项重要的技术任务。本文详细介绍了Android连接MySQL数据库的操作流程和技术要点。首先,Android平台提供了SQLiteOpenHelper类作为数据库辅助工具,用于创建或打开数据库。开发者可以通过继承并扩展该类,实现对数据库的初始化和版本管理。此外,文章还探讨了使用第三方库如Retrofit或Volley进行网络请求,以及如何通过JSON格式交换数据,确保与MySQL服务器的高效通信。 ... [详细]
  • 本文介绍了如何在iOS平台上使用GLSL着色器将YV12格式的视频帧数据转换为RGB格式,并展示了转换后的图像效果。通过详细的技术实现步骤和代码示例,读者可以轻松掌握这一过程,适用于需要进行视频处理的应用开发。 ... [详细]
  • 本文深入探讨了CGLIB BeanCopier在Bean对象复制中的应用及其优化技巧。相较于Spring的BeanUtils和Apache的BeanUtils,CGLIB BeanCopier在性能上具有显著优势。通过详细分析其内部机制和使用场景,本文提供了多种优化方法,帮助开发者在实际项目中更高效地利用这一工具。此外,文章还讨论了CGLIB BeanCopier在复杂对象结构和大规模数据处理中的表现,为读者提供了实用的参考和建议。 ... [详细]
  • 在过去,我曾使用过自建MySQL服务器中的MyISAM和InnoDB存储引擎(也曾尝试过Memory引擎)。今年初,我开始转向阿里云的关系型数据库服务,并深入研究了其高效的压缩存储引擎TokuDB。TokuDB在数据压缩和处理大规模数据集方面表现出色,显著提升了存储效率和查询性能。通过实际应用,我发现TokuDB不仅能够有效减少存储成本,还能显著提高数据处理速度,特别适用于高并发和大数据量的场景。 ... [详细]
  • Java 模式原型在游戏服务器架构中的应用与优化 ... [详细]
  • 手机49kbps转换比特率256Kpbs{‘corpus_no’:‘7045177033217452815’,‘err_msg’:‘success.’,‘err_no’:0,‘re ... [详细]
  • 基于Net Core 3.0与Web API的前后端分离开发:Vue.js在前端的应用
    本文介绍了如何使用Net Core 3.0和Web API进行前后端分离开发,并重点探讨了Vue.js在前端的应用。后端采用MySQL数据库和EF Core框架进行数据操作,开发环境为Windows 10和Visual Studio 2019,MySQL服务器版本为8.0.16。文章详细描述了API项目的创建过程、启动步骤以及必要的插件安装,为开发者提供了一套完整的开发指南。 ... [详细]
  • 如何高效启动大数据应用之旅?
    在前一篇文章中,我探讨了大数据的定义及其与数据挖掘的区别。本文将重点介绍如何高效启动大数据应用项目,涵盖关键步骤和最佳实践,帮助读者快速踏上大数据之旅。 ... [详细]
  • 探索聚类分析中的K-Means与DBSCAN算法及其应用
    聚类分析是一种用于解决样本或特征分类问题的统计分析方法,也是数据挖掘领域的重要算法之一。本文主要探讨了K-Means和DBSCAN两种聚类算法的原理及其应用场景。K-Means算法通过迭代优化簇中心来实现数据点的划分,适用于球形分布的数据集;而DBSCAN算法则基于密度进行聚类,能够有效识别任意形状的簇,并且对噪声数据具有较好的鲁棒性。通过对这两种算法的对比分析,本文旨在为实际应用中选择合适的聚类方法提供参考。 ... [详细]
  • 本文探讨了基于点集估算图像区域的Alpha形状算法在Python中的应用。通过改进传统的Delaunay三角剖分方法,该算法能够生成更加灵活和精确的形状轮廓,避免了单纯使用Delaunay三角剖分时可能出现的过大三角形问题。这种“模糊Delaunay三角剖分”技术不仅提高了形状的准确性,还增强了对复杂图像区域的适应能力。 ... [详细]
author-avatar
每天听点心理学_961
这个家伙很懒,什么也没留下!
PHP1.CN | 中国最专业的PHP中文社区 | DevBox开发工具箱 | json解析格式化 |PHP资讯 | PHP教程 | 数据库技术 | 服务器技术 | 前端开发技术 | PHP框架 | 开发工具 | 在线工具
Copyright © 1998 - 2020 PHP1.CN. All Rights Reserved | 京公网安备 11010802041100号 | 京ICP备19059560号-4 | PHP1.CN 第一PHP社区 版权所有