作者:手机用户2502873453_987 | 来源:互联网 | 2023-07-24 11:27
要实现近实时搜索,就必须有一种机制来实时的处理数据然后生成到solr的索引中去,flume-ng刚好提供了这样一种机制,它可以实时收集数据,然后通过MorphlineSolrSink对数据进行ETL,
要实现近实时搜索,就必须有一种机制来实时的处理数据然后生成到solr的索引中去,flume-ng刚好提供了这样一种机制,它可以实时收集数据,然后通过MorphlineSolrSink对数据进行ETL,最后写入到solr的索引中,这样就能在solr搜索引擎中近实时的查询到新进来的数据了。
搭建步骤:
1 我们这里只做演示效果,所以新建了一个文件file01来保存了两条数据,后面将通过flume-ng avro-client -H localhost -p 44444 -F file01将这两条数据提交给flume agent。
这两条数据如下:
{"id": "1234567890", "user_friends_count": 111, "user_location": "Palo Alto", "user_description": "desc1", "user_statuses_count": 11111, "user_followers_count": 111, "user_name": "name1", "user_screen_name": "fake_user1", "created_at": "1985-09-04T18:01:01Z", "text": "sample tweet one", "retweet_count": 0, "retweeted": false, "in_reply_to_user_id": 0, "source": "href=\"http:\/\/sample.com\"", "in_reply_to_status_id": 0, "media_url_https": null, "expanded_url": null}
{"id": "2345678901", "user_friends_count": 222, "user_location": "San Francisco", "user_description": "desc2", "user_statuses_count": 222222, "user_followers_count": 222, "user_name": "name2", "user_screen_name": "fake_user2", "created_at": "1985-09-04T19:14:34Z", "text": "sample tweet two", "retweet_count": 0, "retweeted": false, "in_reply_to_user_id": 0, "source": "href=\"http:\/\/sample.com\"", "in_reply_to_status_id": 0, "media_url_https": null, "expanded_url": null}
是两条JSON数据,后面我们会用morphlines来对json数据进行ETL抽取指定的几个字段。
2 在CM中flume的配置中配置Flume-NG Solr 接收器,如下图:
morphlines配置文件如下:
[plain] view plain copy
- # Specify server locations in a SOLR_LOCATOR variable; used later in
- # variable substitutions:
- SOLR_LOCATOR : {
- # Name of solr collection
- collection : collection1
-
- # ZooKeeper ensemble
- zkHost : "master68:2181,slave69:2181,slave76:2181/solr"
- }
-
- # Specify an array of one or more morphlines, each of which defines an ETL
- # transformation chain. A morphline consists of one or more potentially
- # nested commands. A morphline is a way to consume records such as Flume events,
- # HDFS files or blocks, turn them into a stream of records, and pipe the stream
- # of records through a set of easily configurable transformations on its way to
- # Solr.
- morphlines : [
- {
- # Name used to identify a morphline. For example, used if there are multiple
- # morphlines in a morphline config file.
- id : morphline1
-
- # Import all morphline commands in these java packages and their subpackages.
- # Other commands that may be present on the classpath are not visible to this
- # morphline.
- importCommands : ["org.kitesdk.**", "org.apache.solr.**"]
-
- commands : [
- {
- readJson {}
- }
- {
- extractJsonPaths {
- flatten : false
- paths : {
- id : /id
- user_name : /user_screen_name
- created_at : /created_at
- text : /text
- }
- }
- }
-
- # Consume the output record of the previous command and pipe another
- # record downstream.
- #
- # convert timestamp field to native Solr timestamp format
- # such as 2012-09-06T07:14:34Z to 2012-09-06T07:14:34.000Z
- {
- convertTimestamp {
- field : created_at
- inputFormats : ["yyyy-MM-dd'T'HH:mm:ss'Z'", "yyyy-MM-dd"]
- inputTimezone : America/Los_Angeles
- outputFormat : "yyyy-MM-dd'T'HH:mm:ss.SSS'Z'"
- outputTimezone : UTC
- }
- }
-
- # Consume the output record of the previous command and pipe another
- # record downstream.
- #
- # This command deletes record fields that are unknown to Solr
- # schema.xml.
- #
- # Recall that Solr throws an exception on any attempt to load a document
- # that contains a field that is not specified in schema.xml.
- {
- sanitizeUnknownSolrFields {
- # Location from which to fetch Solr schema
- solrLocator : ${SOLR_LOCATOR}
- }
- }
-
- # log the record at DEBUG level to SLF4J
- { logDebug { format : "output record: {}", args : ["@{}"] } }
-
- # load the record into a Solr server or MapReduce Reducer
- {
- loadSolr {
- solrLocator : ${SOLR_LOCATOR}
- }
- }
- ]
- }
- ]
简单解释一下这个morphlines配置文件,首先执行了一个readJson命令,将读入的event的内容转换成了一个json对象,然后使用extractJsonPaths命令抽取json对象的具体字段值并重新赋值给另一个字段(例如user_name : /user_screen_name 是读取user_screen_name的值并赋值给user_name ),然后使用convertTimestamp对create_at字段进行格式化,最后执行sanitizeUnknownSolrFields命令舍弃solr的schema中没有配置的field字段,即通过ETL之后record最终只保留solr中已配置的字段。然后通过loadSolr指令将最终的record提交到solr。
3 接下来就是flume agent的配置:
[plain] view plain copy
- tier1.sources=source1
- tier1.channels=channel1
- tier1.sinks=sink1
-
- tier1.sources.source1.type = avro
- tier1.sources.source1.bind = 0.0.0.0
- tier1.sources.source1.port = 44444
- tier1.sources.source1.channels=channel1
-
- tier1.channels.channel1.type=memory
- tier1.channels.channel1.capacity=10000
-
- tier1.sinks.sink1.type = org.apache.flume.sink.solr.morphline.MorphlineSolrSink
- tier1.sinks.sink1.channel = channel1
- tier1.sinks.sink1.morphlineFile = morphlines.conf
- tier1.sinks.sink1.morphlineId = morphline1
这里一个注意点就是我们在CM中配置的Flume-NG Solr 接收器,所以morphlineFile直接写morphlines.conf就行了,否则需要写绝对路径,不然没法找到morphlines的配置文件。
4 上面三部准备好之后,启动agent,然后在shell控制台执行 flume-ng avro-client -H localhost -p 44444 -F file01命令,将我们第一步创建的数据文件提交给agent。
5执行完后,如果没报错的话,可以去solr中通过http://slave77:8983/solr/collection1/select?q=*:*查询一下这两条数据是不是已经创建到搜索引擎的索引库中
如果看到如下图示的结果,恭喜你,你已经成功完成了本篇文章的NRT架构的搭建。