热门标签 | HotTags
当前位置:  开发笔记 > 编程语言 > 正文

centos7使用kubeadm配置高可用k8s集群的另一种方式

centos7,使用,kubeadm,配置,高,可用,k8s,集

简介

使用kubeadm配置多master节点,实 现高可用。

安装

实验环境说明

实验架构
lab1: etcd master keepalived 11.11.11.111 lab2: etcd master keepalived 11.11.11.112 lab3: etcd master keepalived 11.11.11.113 lab4: node 11.11.11.114 lab5: node 11.11.11.115 lab6: node 11.11.11.116 vip: 11.11.11.110 
实验使用的Vagrantfile
# -*- mode: ruby -*- # vi: set ft=ruby : ENV["LC_ALL"] = "en_US.UTF-8" Vagrant.configure("2") do |config| (1..6).each do |i| config.vm.define "lab#{i}" do |node| node.vm.box = "centos-7.4-docker-17" node.ssh.insert_key = false node.vm.hostname = "lab#{i}" node.vm.network "private_network", ip: "11.11.11.11#{i}" node.vm.provision "shell", inline: "echo hello from node #{i}" node.vm.provider "virtualbox" do |v| v.cpus = 2 v.customize ["modifyvm", :id, "--name", "lab#{i}", "--memory", "2048"] end end end end 

在所有机器上安装kubeadm

参考之前的文章《centos7安装kubeadm》

配置所有节点的kubelet

# 配置kubelet使用国内可用镜像 # 修改/etc/systemd/system/kubelet.service.d/10-kubeadm.conf # 添加如下配置 EnvirOnment="KUBELET_EXTRA_ARGS=--pod-infra-container-image=registry.cn-shanghai.aliyuncs.com/gcr-k8s/pause-amd64:3.0" # 使用命令 sed -i '/ExecStart=$/i EnvirOnment="KUBELET_EXTRA_ARGS=--pod-infra-container-image=registry.cn-shanghai.aliyuncs.com/gcr-k8s/pause-amd64:3.0"' /etc/systemd/system/kubelet.service.d/10-kubeadm.conf # 重新载入配置 systemctl daemon-reload 

配置hosts

cat >>/etc/hosts<

启动etcd集群

lab1,lab2,lab3节点上启动etcd集群

# lab1 docker stop etcd && docker rm etcd rm -rf /data/etcd mkdir -p /data/etcd docker run -d \ --restart always \ -v /etc/etcd/ssl/certs:/etc/ssl/certs \ -v /data/etcd:/var/lib/etcd \ -p 2380:2380 \ -p 2379:2379 \ --name etcd \ registry.cn-hangzhou.aliyuncs.com/google_containers/etcd-amd64:3.1.12 \ etcd --name=etcd0 \ --advertise-client-urls=http://11.11.11.111:2379 \ --listen-client-urls=http://0.0.0.0:2379 \ --initial-advertise-peer-urls=http://11.11.11.111:2380 \ --listen-peer-urls=http://0.0.0.0:2380 \ --initial-cluster-token=9477af68bbee1b9ae037d6fd9e7efefd \ --initial-cluster=etcd0=http://11.11.11.111:2380,etcd1=http://11.11.11.112:2380,etcd2=http://11.11.11.113:2380 \ --initial-cluster-state=new \ --auto-tls \ --peer-auto-tls \ --data-dir=/var/lib/etcd # lab2 docker stop etcd && docker rm etcd rm -rf /data/etcd mkdir -p /data/etcd docker run -d \ --restart always \ -v /etc/etcd/ssl/certs:/etc/ssl/certs \ -v /data/etcd:/var/lib/etcd \ -p 2380:2380 \ -p 2379:2379 \ --name etcd \ registry.cn-hangzhou.aliyuncs.com/google_containers/etcd-amd64:3.1.12 \ etcd --name=etcd1 \ --advertise-client-urls=http://11.11.11.112:2379 \ --listen-client-urls=http://0.0.0.0:2379 \ --initial-advertise-peer-urls=http://11.11.11.112:2380 \ --listen-peer-urls=http://0.0.0.0:2380 \ --initial-cluster-token=9477af68bbee1b9ae037d6fd9e7efefd \ --initial-cluster=etcd0=http://11.11.11.111:2380,etcd1=http://11.11.11.112:2380,etcd2=http://11.11.11.113:2380 \ --initial-cluster-state=new \ --auto-tls \ --peer-auto-tls \ --data-dir=/var/lib/etcd # lab3 docker stop etcd && docker rm etcd rm -rf /data/etcd mkdir -p /data/etcd docker run -d \ --restart always \ -v /etc/etcd/ssl/certs:/etc/ssl/certs \ -v /data/etcd:/var/lib/etcd \ -p 2380:2380 \ -p 2379:2379 \ --name etcd \ registry.cn-hangzhou.aliyuncs.com/google_containers/etcd-amd64:3.1.12 \ etcd --name=etcd2 \ --advertise-client-urls=http://11.11.11.113:2379 \ --listen-client-urls=http://0.0.0.0:2379 \ --initial-advertise-peer-urls=http://11.11.11.113:2380 \ --listen-peer-urls=http://0.0.0.0:2380 \ --initial-cluster-token=9477af68bbee1b9ae037d6fd9e7efefd \ --initial-cluster=etcd0=http://11.11.11.111:2380,etcd1=http://11.11.11.112:2380,etcd2=http://11.11.11.113:2380 \ --initial-cluster-state=new \ --auto-tls \ --peer-auto-tls \ --data-dir=/var/lib/etcd # 验证查看集群 docker exec -ti etcd ash etcdctl member list etcdctl cluster-health exit 

配置keepalived

在3台master节点操作

# 载入内核相关模块 lsmod | grep ip_vs modprobe ip_vs # 启动keepalived # eth1为本次实验11.11.11.0/24网段的所在网卡 docker run --net=host --cap-add=NET_ADMIN \ -e KEEPALIVED_INTERFACE=eth1 \ -e KEEPALIVED_VIRTUAL_IPS="#PYTHON2BASH:['11.11.11.110']" \ -e KEEPALIVED_UNICAST_PEERS="#PYTHON2BASH:['11.11.11.111','11.11.11.112','11.11.11.113']" \ -e KEEPALIVED_PASSWORD=hello \ --name k8s-keepalived \ --restart always \ -d osixia/keepalived:1.4.4 # 查看日志 # 会看到两个成为backup 一个成为master docker logs k8s-keepalived # 此时会配置 11.11.11.110 到其中一台机器 # ping测试 ping -c4 11.11.11.110 # 如果失败后清理后,重新实验 docker rm -f k8s-keepalived ip a del 11.11.11.110/32 dev eth1 

在第一台master节点初始化

# 生成token # 保留token后面还要使用 token=$(kubeadm token generate) echo $token # 生成配置文件 # advertiseAddress 配置为VIP地址 cat >kubeadm-master.config< containers: - name: kube-flannel image: registry.cn-shanghai.aliyuncs.com/gcr-k8s/flannel:v0.10.0-amd64 command: - /opt/bin/flanneld args: - --ip-masq - --kube-subnet-mgr - --iface=eth1 # 启动 kubectl apply -f kube-flannel.yml # 查看 kubectl get pods -n kube-system kubectl get svc -n kube-system # 设置master允许部署应用pod,参与工作负载,现在可以部署其他系统组件 # 如 dashboard, heapster, efk等 kubectl taint nodes --all node-role.kubernetes.io/master- 

启动其他master节点

# 打包第一台master初始化之后的/etc/kubernetes/pki目录 cd /etc/kubernetes && tar czvf /root/pki.tgz pki/ && cd ~ # 上传到其他master的/etc/kubernetes目录下 tar xf pki.tgz -C /etc/kubernetes/ # 复制启动第一台master时的配置文件到其他master节点 # 初始化 kubeadm init --config kubeadm-master.config systemctl enable kubelet # 配置kubectl使用 mkdir -p $HOME/.kube sudo cp -i /etc/kubernetes/admin.conf $HOME/.kube/config sudo chown $(id -u):$(id -g) $HOME/.kube/config # 在第一台配置master节点查看 kubectl get pod --all-namespaces -o wide | grep lab1 kubectl get pod --all-namespaces -o wide | grep lab2 kubectl get pod --all-namespaces -o wide | grep lab3 kubectl get nodes -o wide 

启动node节点

# 加入master节点 # 这个命令是之前初始化master完成时,输出的命令 kubeadm join 11.11.11.110:6443 --token nevmjk.iuh214fc8i0k3iue --discovery-token-ca-cert-hash sha256:0e4f738348be836ff810bce754e059054845f44f01619a37b817eba83282d80f systemctl enable kubelet 

测试

重建多个coredns副本

# 删除coredns的pods kubectl get pods -n kube-system -o wide | grep coredns all_coredns_pods=$(kubectl get pods -n kube-system -o wide | grep coredns | awk '{print $1}' | xargs) echo $all_coredns_pods kubectl delete pods $all_coredns_pods -n kube-system # 修改副本数 # replicas: 3 # 可以修改为node节点的个数 kubectl edit deploy coredns -n kube-system # 查看状态 kubectl get pods -n kube-system -o wide | grep coredns 

基础测试

1. 启动

# 直接使用命令测试 kubectl run nginx --replicas=2 --image=nginx:alpine --port=80 kubectl expose deployment nginx --type=NodePort --name=example-service-nodeport kubectl expose deployment nginx --name=example-service # 使用配置文件测试 cat >example-nginx.yml<

2. 查看状态

kubectl get deploy kubectl get pods kubectl get svc kubectl describe svc example-service 

3. DNS解析

kubectl run curl --image=radial/busyboxplus:curl -i --tty nslookup kubernetes nslookup example-service curl example-service # 如果时间过长会返回错误,可以使用如下方式再进入测试 curlPod=$(kubectl get pod | grep curl | awk '{print $1}') kubectl exec -ti $curlPod -- sh 

4. 访问测试

# 10.96.59.56 为查看svc时获取到的clusterip curl "10.96.59.56:80" # 32223 为查看svc时获取到的 nodeport http://11.11.11.114:32223/ http://11.11.11.115:32223/ 

3. 清理删除

kubectl delete svc example-service example-service-nodeport kubectl delete deploy nginx curl 

高可用测试

任意关闭master节点测试集群是能否正常执行上一步的基础测试,查看相关信息,只关闭到只一台master,因为etcd部署在相应的master节点上,如果关闭了两台,会造成etcd不可用,进而让整个集群不可用。

kubectl get pod --all-namespaces -o wide kubectl get pod --all-namespaces -o wide | grep lab1 kubectl get pod --all-namespaces -o wide | grep lab2 kubectl get pod --all-namespaces -o wide | grep lab3 kubectl get nodes -o wide 

注意事项

  • 当直接把node节点关闭时,只有过了5分钟之后,上面的pod才会被检测到有问题,并迁移到其他节点

    如果想快速迁移可以执行 kubectl delete node

    也可以修改controller-manager的pod-eviction-timeout参数,默认5m

    node-monitor-grace-period参数,默认40s

  • 此方案和之前文章中写的高可用方案相比,缺点就是不能使用 kube-apiserver 多节点负载均衡的功能。所有对kube-apiserver的请求都只会发给一个master节点,只有当这个master节点挂掉之后,才会把所有有请求发给另外的master


本文转自掘金- centos7使用kubeadm配置高可用k8s集群的另一种方式

推荐阅读
  • 本文详细介绍如何在SSM(Spring + Spring MVC + MyBatis)框架中实现分页功能。包括分页的基本概念、数据准备、前端分页栏的设计与实现、后端分页逻辑的编写以及最终的测试步骤。 ... [详细]
  • 5G时代的广域网革新:企业迈向万物智联的新起点
    随着2020年初“新基建”概念的提出,以5G、AI、IoT等为核心的新型基础设施建设正逐步改变企业的运营模式。本文探讨了在这一背景下,企业广域网(WAN)如何通过5G与SD-WAN技术的融合实现转型升级,成为推动企业智能化、数字化发展的关键力量。 ... [详细]
  • 技术日志:使用 Ruby 爬虫抓取拉勾网职位数据并生成词云分析报告
    技术日志:使用 Ruby 爬虫抓取拉勾网职位数据并生成词云分析报告 ... [详细]
  • 我正在使用 Ruby on Rails 构建个人网站。总体而言,RoR 是一个非常出色的工具,它提供了丰富的功能和灵活性,使得创建自定义页面变得既高效又便捷。通过利用其强大的框架和模块化设计,我可以轻松实现复杂的功能,同时保持代码的整洁和可维护性。此外,Rails 的社区支持也非常强大,为开发过程中遇到的问题提供了丰富的资源和解决方案。 ... [详细]
  • 作为140字符的开创者,Twitter看似简单却异常复杂。其简洁之处在于仅用140个字符就能实现信息的高效传播,甚至在多次全球性事件中超越传统媒体的速度。然而,为了支持2亿用户的高效使用,其背后的技术架构和系统设计则极为复杂,涉及高并发处理、数据存储和实时传输等多个技术挑战。 ... [详细]
  • 图神经网络模型综述
    本文综述了图神经网络(Graph Neural Networks, GNN)的发展,从传统的数据存储模型转向图和动态模型,探讨了模型中的显性和隐性结构,并详细介绍了GNN的关键组件及其应用。 ... [详细]
  • 本文详细介绍了在 Windows 7 上安装和配置 PHP 5.4 的 Memcached 分布式缓存系统的方法,旨在减少数据库的频繁访问,提高应用程序的响应速度。 ... [详细]
  • 本文介绍了进程的基本概念及其在操作系统中的重要性,探讨了进程与程序的区别,以及如何通过多进程实现并发和并行。文章还详细讲解了Python中的multiprocessing模块,包括Process类的使用方法、进程间的同步与异步调用、阻塞与非阻塞操作,并通过实例演示了进程池的应用。 ... [详细]
  • 微服务自动化.dockercompose
    目录一、docker-compose二、docker-compose安装与配置1、修改docker.service2、下载文件3、将刚才下载的docker-compose文 ... [详细]
  • SpringBoot底层注解用法及原理
    2.1、组件添加1、Configuration基本使用Full模式与Lite模式示例最佳实战配置类组件之间无依赖关系用Lite模式加速容器启动过程,减少判断配置类组 ... [详细]
  • 本文详细介绍了跨站脚本攻击(XSS)的基本概念、工作原理,并通过实际案例演示如何构建XSS漏洞的测试环境,以及探讨了XSS攻击的不同形式和防御策略。 ... [详细]
  • 本文将详细介绍如何配置并整合MVP架构、Retrofit网络请求库、Dagger2依赖注入框架以及RxAndroid响应式编程库,构建高效、模块化的Android应用。 ... [详细]
  • 本文推荐了六款高效的Java Web应用开发工具,并详细介绍了它们的实用功能。其中,分布式敏捷开发系统架构“zheng”项目,基于Spring、Spring MVC和MyBatis技术栈,提供了完整的分布式敏捷开发解决方案,支持快速构建高性能的企业级应用。此外,该工具还集成了多种中间件和服务,进一步提升了开发效率和系统的可维护性。 ... [详细]
  • 当前,众多初创企业对全栈工程师的需求日益增长,但市场中却存在大量所谓的“伪全栈工程师”,尤其是那些仅掌握了Node.js技能的前端开发人员。本文旨在深入探讨全栈工程师在现代技术生态中的真实角色与价值,澄清对这一角色的误解,并强调真正的全栈工程师应具备全面的技术栈和综合解决问题的能力。 ... [详细]
  • Python作为当今IT领域中最受欢迎且高效的语言之一,其框架能够显著加速Web应用程序的开发过程。本文推荐并对比了十大顶级Python Web开发框架,其中CubicWeb以其卓越的代码重用性和模块化设计脱颖而出,为开发者提供了强大的支持。 ... [详细]
author-avatar
技术交流
这个家伙很懒,什么也没留下!
PHP1.CN | 中国最专业的PHP中文社区 | DevBox开发工具箱 | json解析格式化 |PHP资讯 | PHP教程 | 数据库技术 | 服务器技术 | 前端开发技术 | PHP框架 | 开发工具 | 在线工具
Copyright © 1998 - 2020 PHP1.CN. All Rights Reserved | 京公网安备 11010802041100号 | 京ICP备19059560号-4 | PHP1.CN 第一PHP社区 版权所有