热门标签 | HotTags
当前位置:  开发笔记 > 编程语言 > 正文

C语言中按位取反与按位与运算符的使用方法及应用场景解析

位运算是一种基于二进制的计算方式,在系统软件开发中经常用于处理二进制位的相关问题。C语言提供了六种位操作运算符,专门用于对整型数据(包括带符号和无符号的char、short等)进行操作。本文详细解析了按位取反和按位与运算符的使用方法及其典型应用场景,帮助开发者更好地理解和应用这些运算符。


位运算是指用二进制进行的运算。 系统软件经常需要处理二进制位的问题。 c语言有6个位操作运算符。 这些运算符只能用于整数操作数。 也就是说,只能用于有符号或无符号的字符、短字符、整型和长整型。


c语言提供的位运算符列表:




1、“比特与”运算符(


位单位是指参加运算的两个数据,以二进制为单位进行and运算。 如果对应的二进制位都是1,


这个位的结果值是1,否则为0。 这里的1可以理解为逻辑中的true,0可以理解为逻辑中的false。 按位置和那个人


逻辑上与“与”的运算规则一致。 的“与”要求运算数均为真,结果为真。 如果a=真,b=真,则ab=真


例如:


33的二进制代码是11(2)。 (为了区分十进制和其他进制,本文中除十进制以外的数据都在数据后面加括号,括号内注明该进制,二进制表示为2 )存储在存储器中的数据基本单位为字节(Byte ),1字节为8比特位是描述计算机数据量的最小单位。 在二进制系统中,每0或1位。 11 )如果将2 )嵌入1字节,则为0000011 )。 的二进制代码为101(2),将其增补为1字节后,为00000101(2)。


通过位和运算:


0000011 (二)。


00000101(2)。


00000001(2) )。


由此可知35=1


c语言代码:




按位用途分类:


(1)清除


如果要清零一个存储器单元,即使所有位都为0,也请查找满足以下条件的二进制数。


的数为1位数,新数的相应位数为0。 然后通过让两者运算,可以达到清零的目的。


示例:


原来的数为43,即00101011(2),找别的数,将其设为148,即10010100(2),对两者按比特进行运算。


10101011 (二) 10010100(2 (二)二)


00000000(2) )。


c语言源代码:




(2)取一个数中特定的位数


有整数a (2字节),想取其中的低字节时,以比特为单位与a和8个1对应即可。


a 00101100 10101100


b 00000000 11111111


c 00000000 10101100


(3)保持指定的比特:

p class="ql-align-justify">与一个数进行“按位与”运算,此数在该位取1.

例如:有一数84,即01010100(2),想把其中从左边算起的第3,4,5,7,8位保留下来,运算如下:

01010100(2)

&00111011(2)

00010000(2)

即:a=84,b=59

c=a&b=16

c语言源代码:

2、“按位或”运算符(|)

两个相应的二进制位中只要有一个为1,该位的结果值为1。借用逻辑学中或运算的话来说就是,大胆的皮皮虾为真。

例如:60(8)|17(8),将八进制60与八进制17进行按位或运算。

00110000|00001111

00111111

c语言源代码:

应用:按位或运算常用来对一个数据的某些位定值为1。例如:如果想使一个数a的低4位改为1,则只需要将a与17(8)进行按位或运算即可。

3、“异或”运算符(^)

他的规则是:若参加运算的两个二进制位值相同则为0,否则为1

即0∧0=0,0∧1=1,1∧0=1, 1∧1=0。

*例:*

00111001 ∧ 00101010

00010011

c语言源代码:

应用:

(1)使特定位翻转

设有数01111010(2),想使其低4位翻转,即1变0,0变1.可以将其与00001111(2)进行“异或”运算,即:

01111010^00001111

01110101

运算结果的低4位正好是原数低4位的翻转。可见,要使哪几位翻转就将与其进行∧运算的该几位置为1即可。

(2)与0相“异或”,保留原值

例如:012^00=012

00001010^00000000

00001010

因为原数中的1与0进行异或运算得1,0^0得0,故保留原数。

(3)交换两个值,不用临时变量

例如:a=3,即11(2);b=4,即100(2)。

想将a和b的值互换,可以用以下赋值语句实现:

a=a∧b;

b=b∧a;

a=a∧b;

a=011(2)

(∧)b=100(2)

a=111(2)(a∧b的结果,a已变成7)

(∧)b=100(2)

b=011(2)(b∧a的结果,b已变成3)

(∧)a=111(2)

a=100(2)(a∧b的结果,a已变成4)

等效于以下两步:

① 执行前两个赋值语句:“a=a∧b;”和“b=b∧a;”相当于b=b∧(a∧b)。

② 再执行第三个赋值语句:a=a∧b。由于a的值等于(a∧b),b的值等于(b∧a∧b),

因此,相当于a=a∧b∧b∧a∧b,即a的值等于a∧a∧b∧b∧b,等于b。很神奇吧!

c语言源代码:

4、“取反”运算符(~)

他是一元运算符,用于求整数的二进制反码,即分别将操作数各二进制位上的1变为0,0变为1。

例如:~77(8)

源代码:

5、左移运算符(<<)

左移运算符是用来将一个数的各二进制位左移若干位,移动的位数由右操作数指定(右操作数必须是非负值),其右边空出的位用0填补,高位左移溢出则舍弃该高位。

例如:将a的二进制数左移2位,右边空出的位补0,左边溢出的位舍弃。若a=15,即00001111(2),左移2位得00111100(2)。

源代码:

左移1位相当于该数乘以2,左移2位相当于该数乘以2*2=4,15<<2=60,即乘了4。但此结论只适用于该数左移时被溢出舍弃的高位中不包含1的情况。

假设以一个字节(8位)存一个整数,若a为无符号整型变量,则a=64时,左移一位时溢出的是0,而左移2位时,溢出的高位中包含1。

6、右移运算符(>>)

右移运算符是用来将一个数的各二进制位右移若干位,移动的位数由右操作数指定(右操作数必须是非负值),移到右端的低位被舍弃,对于无符号数,高位补0。对于有符号数,某些机器将对左边空出的部分用符号位填补(即“算术移位”),而另一些机器则对左边空出的部分用0填补(即“逻辑移位”)。

注意:

对无符号数,右移时左边高位移入0;对于有符号的值,如果原来符号位为0(该数为正),则左边也是移入0。如果符号位原来为1(即负数),则左边移入0还是1,要取决于所用的计算机系统。有的系统移入0,有的系统移入1。移入0的称为“逻辑移位”,即简单移位;移入1的称为“算术移位”。

例:a的值是八进制数113755:

a:1001011111101101 (用二进制形式表示)

a>>1: 0100101111110110 (逻辑右移时)

a>>1: 1100101111110110 (算术右移时)

在有些系统中,a>>1得八进制数045766,而在另一些系统上可能得到的是145766。Turbo C和其他一些C编译采用的是算术右移,即对有符号数右移时,如果符号位原来为1,左面移入高位的是1。

源代码:

7、位运算赋值运算符

位运算符与赋值运算符可以组成复合赋值运算符。

例如: &=, |=, >>=, <<=, ∧=

例:a & = b相当于 a = a & b

a <<=2相当于a = a <<2

需要更多学习笔记干货的小伙伴、欢迎关注公众号【老九学堂】(づ ̄3 ̄)づ╭❤~


推荐阅读
  • JavaScript 基础语法指南
    本文详细介绍了 JavaScript 的基础语法,包括变量、数据类型、运算符、语句和函数等内容,旨在为初学者提供全面的入门指导。 ... [详细]
  • 深入解析Java枚举及其高级特性
    本文详细介绍了Java枚举的概念、语法、使用规则和应用场景,并探讨了其在实际编程中的高级应用。所有相关内容已收录于GitHub仓库[JavaLearningmanual](https://github.com/Ziphtracks/JavaLearningmanual),欢迎Star并持续关注。 ... [详细]
  • 本文详细介绍了C语言的起源、发展及其标准化过程,涵盖了从早期的BCPL和B语言到现代C语言的演变,并探讨了其在操作系统和跨平台编程中的重要地位。 ... [详细]
  • Python 内存管理机制详解
    本文深入探讨了Python的内存管理机制,涵盖了垃圾回收、引用计数和内存池机制。通过具体示例和专业解释,帮助读者理解Python如何高效地管理和释放内存资源。 ... [详细]
  • 本文深入探讨了HTTP请求和响应对象的使用,详细介绍了如何通过响应对象向客户端发送数据、处理中文乱码问题以及常见的HTTP状态码。此外,还涵盖了文件下载、请求重定向、请求转发等高级功能。 ... [详细]
  • 本题探讨了在一个有向图中,如何根据特定规则将城市划分为若干个区域,使得每个区域内的城市之间能够相互到达,并且划分的区域数量最少。题目提供了时间限制和内存限制,要求在给定的城市和道路信息下,计算出最少需要划分的区域数量。 ... [详细]
  • 本文探讨了如何使用自增和自减运算符遍历二维数组中的元素。通过实例详细解释了指针与二维数组结合使用的正确方法,并解答了常见的错误用法。 ... [详细]
  • 问题描述:通过添加最少数量的括号,使得给定的括号序列变为合法,并输出最终的合法序列。数据范围:字符串长度不超过100。涉及算法:区间动态规划(Interval DP)。 ... [详细]
  • 利用决策树预测NBA比赛胜负的Python数据挖掘实践
    本文通过使用2013-14赛季NBA赛程与结果数据集以及2013年NBA排名数据,结合《Python数据挖掘入门与实践》一书中的方法,展示如何应用决策树算法进行比赛胜负预测。我们将详细讲解数据预处理、特征工程及模型评估等关键步骤。 ... [详细]
  • 本文详细介绍了C++中map容器的多种删除和交换操作,包括clear、erase、swap、extract和merge方法,并提供了完整的代码示例。 ... [详细]
  • 丽江客栈选择问题
    本文介绍了一道经典的算法题,题目涉及在丽江河边的n家特色客栈中选择住宿方案。两位游客希望住在色调相同的两家客栈,并在晚上选择一家最低消费不超过p元的咖啡店小聚。我们将详细探讨如何计算满足条件的住宿方案总数。 ... [详细]
  • JSOI2010 蔬菜庆典:树结构中的无限大权值问题
    本文探讨了 JSOI2010 的蔬菜庆典问题,主要关注如何处理非根非叶子节点的无限大权值情况。通过分析根节点及其子树的特性,提出了有效的解决方案,并详细解释了算法的实现过程。 ... [详细]
  • 本题来自WC2014,题目编号为BZOJ3435、洛谷P3920和UOJ55。该问题描述了一棵不断生长的带权树及其节点上小精灵之间的友谊关系,要求实时计算每次新增节点后树上所有可能的朋友对数。 ... [详细]
  • 深入解析SpringMVC核心组件:DispatcherServlet的工作原理
    本文详细探讨了SpringMVC的核心组件——DispatcherServlet的运作机制,旨在帮助有一定Java和Spring基础的开发人员理解HTTP请求是如何被映射到Controller并执行的。文章将解答以下问题:1. HTTP请求如何映射到Controller;2. Controller是如何被执行的。 ... [详细]
  • 本文详细介绍了如何在 Android 中使用值动画(ValueAnimator)来动态调整 ImageView 的高度,并探讨了相关的关键属性和方法,包括图片填充后的高度、原始图片高度、动画变化因子以及布局重置等。 ... [详细]
author-avatar
手机用户2502939987
这个家伙很懒,什么也没留下!
PHP1.CN | 中国最专业的PHP中文社区 | DevBox开发工具箱 | json解析格式化 |PHP资讯 | PHP教程 | 数据库技术 | 服务器技术 | 前端开发技术 | PHP框架 | 开发工具 | 在线工具
Copyright © 1998 - 2020 PHP1.CN. All Rights Reserved | 京公网安备 11010802041100号 | 京ICP备19059560号-4 | PHP1.CN 第一PHP社区 版权所有