热门标签 | HotTags
当前位置:  开发笔记 > 运维 > 正文

c++图解层序遍历和逐层打印智能指针建造的二叉树

二叉树是极为常见的数据结构,关于如何遍历其中元素的文章更是数不胜数。本文将用形象的图片加上清晰的代码帮助你理解层序遍历的实现,同时我们使用现代c++提供的智能指针来简化树形数据结构的资源管理。
二叉树是极为常见的数据结构,关于如何遍历其中元素的文章更是数不胜数。然而大多数文章都是讲解的前序/中序/后序遍历,有关逐层打印元素的文章并不多,已有文章的讲解也较为晦涩读起来不得要领。本文将用形象的图片加上清晰的代码帮助你理解层序遍历的实现,同时我们使用现代c++提供的智能指针来简化树形数据结构的资源管理。

相关教程:数据结构树教程

那么现在让我们进入正题。

使用智能指针构建二叉树

我们这里所要实现的是一个简单地模拟了二叉搜索树的二叉树,提供符合二叉搜索树的要求的插入功能个中序遍历。同时我们使用shared_ptr来管理资源。

现在我们只实现insertldr两个方法,其余方法的实现并不是本文所关心的内容,不过我们会在后续的文章中逐个介绍:

struct BinaryTreeNode: public std::enable_shared_from_this {
    explicit BinaryTreeNode(const int value = 0)
    : value_{value}, left{std::shared_ptr{}}, right{std::shared_ptr{}}
    {}

    void insert(const int value)
    {
        if (value insert(value);
            } else {
                left = std::make_shared(value);
            }
        }

        if (value > value_) {
            if (right) {
                right->insert(value);
            } else {
                right = std::make_shared(value);
            }
        }
    }

    // 中序遍历
    void ldr()
    {
        if (left) {
            left->ldr();
        }

        std::cout <ldr();
        }
    }

    // 分层打印
    void layer_print();

    int value_;
    // 左右子节点
    std::shared_ptr left;
    std::shared_ptr right;

private:
    // 层序遍历
    std::vector> layer_contents();
};

我们的node对象继承自enable_shared_from_this,通常这不是必须的,但是为了在层序遍历时方便操作,我们需要从this构造智能指针,因此这步是必须的。insert会将比root小的元素插入左子树,比root大的插入到右子树;ldr则是最为常规的中序遍历,这里实现它是为了以常规方式查看tree中的所有元素。

值得注意的是,对于node节点我们最好使用make_shared进行创建,而不是将其初始化为全局/局部对象,否则在层序遍历时会因为shared_ptr的析构进而导致对象被销毁,从而引发未定义行为。

现在假设我们有一组数据:[3, 1, 0, 2, 5, 4, 6, 7],将第一个元素作为root,将所有数据插入我们的树中会得到如下的一棵二叉树:

auto root = std::make_shared(3);
root->insert(1);
root->insert(0);
root->insert(2);
root->insert(5);
root->insert(4);
root->insert(6);
root->insert(7);

可以看到节点一共分成了四层,现在我们需要逐层打印,该怎么做呢?

层序遍历

其实思路很简单,我们采用广度优先的思路,先将节点的孩子都打印,然后再去打印子节点的孩子。

以上图为例,我们先打印根节点的值3,然后我们再打印它的所有子节点的值,是15,然后是左右子节点的子节点,以此类推。。。。。。

说起来很简单,但是代码写起来却会遇到麻烦。我们不能简单得像中序遍历时那样使用递归来解决问题(事实上可以用改进的递归算法),因为它会直接来到叶子节点处,这不是我们想要的结果。不过不要紧,我们可以借助于队列,把子节点队列添加到队列末尾,然后从队列开头也就是根节点处遍历,将其子节点添加进队列,随后再对第二个节点做同样的操作,遇到一行结束的地方,我们使用nullptr做标记。

先看具体的代码:

std::vector>
BinaryTreeNode::layer_contents()
{
    std::vector> nodes;
    // 先添加根节点,根节点自己就会占用一行输出,所以添加了作为行分隔符的nullptr
    // 因为需要保存this,所以这是我们需要继承enable_shared_from_this是理由
    // 同样是因为这里,当返回的结果容器析构时this的智能指针也会析构
    // 如果我们使用了局部变量则this的引用计数从1减至0,导致对象被销毁,而使用了make_shared创建的对象引用计数是从2到1,没有问题
    nodes.push_back(shared_from_this());
    nodes.push_back(nullptr);
    // 我们使用index而不是迭代器,是因为添加元素时很可能发生迭代器失效,处理这一问题将会耗费大量精力,而index则无此烦恼
    for (int index = 0; index left) { // 将当前节点的子节点都添加进队列
            nodes.push_back(nodes[index]->left);
        }
        if (nodes[index]->right) {
            nodes.push_back(nodes[index]->right);
        }
    }

    return nodes;
}

代码本身并不复杂,重要的是其背后的思想。

算法图解

如果你第一遍并没有读懂这段代码也不要紧,下面我们有请图解上线:

首先是循环开始时的状态,第一行的内容已经确定了(^代表空指针):

简单来说,就是通过队列来缓存上一行的所有节点,然后再根据上一行的缓存得到下一行的所有节点,循环往复直到二叉树的最后一层。当然不只是二叉树,其他多叉树的层序遍历也可以用类似的思想实现。

好了,知道了如何获取每一行的内容,我们就能逐行处理节点了:

void BinaryTreeNode::layer_print()
{
    auto nodes = layer_contents();
    for (auto iter = nodes.begin(); iter != nodes.end(); ++iter) {
        // 空指针代表一行结束,这里我们遇到空指针就输出换行符
        if (*iter) {
            std::cout <<(*iter)->value_ <<" ";
        } else {
            std::cout <<"\n";
        }
    }
}

如你所见,这个方法足够简单,我们把节点信息保存在额外的容器中是为了方便做进一步的处理,如果只是打印的话大可不必这么麻烦,不过简单通常是有代价的。对于我们的实现来说,分隔符的存在简化了我们对层级之间的区分,然而这样会导致浪费至少log2(n)+1个vector的存储空间,某些情况下可能引起性能问题,而且通过合理得使用计数变量可以避免这些额外的空间浪费。当然具体的实现读者可以自己挑战一下,原理和我们上面介绍的是类似的因此就不在赘述了,也可以参考园内其他的博客文章。

测试

最后让我们看看完整的测试程序,记住要用make_shared创建root实例:

int main()
{
    auto root = std::make_shared(3);
    root->insert(1);
    root->insert(0);
    root->insert(2);
    root->insert(5);
    root->insert(4);
    root->insert(6);
    root->insert(7);
    root->ldr();
    std::cout <<"\n";
    root->layer_print();
}

输出:

可以看到上半部分是中序遍历的结果,下半部分是层序遍历的输出,而且是逐行打印的,不过我们没有做缩进。所以不太美观。

另外你可能已经发现了,我们没有写任何有关资源释放的代码,没错,这就是智能指针的威力,只要注意资源的创建,剩下的事都可以放心得交给智能指针处理,我们可以把更多的精力集中在算法和功能的实现上。

如有错误和疑问欢迎指出!

以上就是c++ 图解层序遍历和逐层打印智能指针建造的二叉树的详细内容,更多请关注其它相关文章!


推荐阅读
  • 电商高并发解决方案详解
    本文以京东为例,详细探讨了电商中常见的高并发解决方案,包括多级缓存和Nginx限流技术,旨在帮助读者更好地理解和应用这些技术。 ... [详细]
  • Redis 是一个高性能的开源键值存储系统,支持多种数据结构。本文将详细介绍 Redis 中的六种底层数据结构及其在对象系统中的应用,包括字符串对象、列表对象、哈希对象、集合对象和有序集合对象。通过12张图解,帮助读者全面理解 Redis 的数据结构和对象系统。 ... [详细]
  • 面试题总结_2019年全网最热门的123个Java并发面试题总结
    面试题总结_2019年全网最热门的123个Java并发面试题总结 ... [详细]
  • 兆芯X86 CPU架构的演进与现状(国产CPU系列)
    本文详细介绍了兆芯X86 CPU架构的发展历程,从公司成立背景到关键技术授权,再到具体芯片架构的演进,全面解析了兆芯在国产CPU领域的贡献与挑战。 ... [详细]
  • 深入解析Python进程间通信:Queue与Pipe的应用
    本文详细探讨了Python中进程间通信的两种常用方法——Queue和Pipe,并通过具体示例介绍了它们的基本概念、使用方法及注意事项。 ... [详细]
  • 前言:由于Android系统本身决定了其自身的单线程模型结构。在日常的开发过程中,我们又不能把所有的工作都交给主线程去处理(会造成UI卡顿现象)。因此,适当的创建子线程去处理一些耗 ... [详细]
  • Java中的引用类型详解
    本文详细介绍了Java中的引用类型,包括强引用、软引用、弱引用和虚引用的特点和应用场景。 ... [详细]
  • SDWebImage第三方库学习
    1、基本使用方法异步下载并缓存-(void)sd_setImageWithURL:(nullableNSURL*)urlNS_REFINED_FOR_SWIFT;使用占位图片& ... [详细]
  • 深入解析Linux中的slabtop命令
    本文将详细介绍如何在Linux系统中使用slabtop命令,帮助读者更好地理解和监控内核slab缓存的使用情况。通过本文的学习,您将掌握slabtop命令的基本用法及其高级功能。 ... [详细]
  • 大华股份2013届校园招聘软件算法类试题D卷
    一、填空题(共17题,每题3分,总共51分)1.设有inta5,*b,**c,执行语句c&b,b&a后,**c的值为________答:5 ... [详细]
  • 本文详细介绍了如何对一个整数的二进制表示进行逆序操作。通过多种方法,包括直接法、查表法和分治法,帮助读者全面理解和掌握这一技术。 ... [详细]
  • 优先队列是一种特殊的队列,不遵循先进先出原则。它分为最大优先队列和最小优先队列。最大优先队列总是将当前最大的元素优先出队,而最小优先队列则总是将当前最小的元素优先出队。本文将详细介绍如何使用二叉堆在C#中实现这两种优先队列。 ... [详细]
  • 本文介绍了Memcached分布式集群中的取模算法和一致性哈希算法的原理及其对缓存命中率的影响。通过详细分析,探讨了如何优化这些算法以提高系统的稳定性和性能。 ... [详细]
  • 本文详细介绍了Java代码分层的基本概念和常见分层模式,特别是MVC模式。同时探讨了不同项目需求下的分层策略,帮助读者更好地理解和应用Java分层思想。 ... [详细]
  • 本文介绍了几个关于SQL查询中列使用的优化规则,包括避免使用SELECT *、指定INSERT列名、修改自增ID为无符号类型、为列添加默认值以及为列添加注释等。 ... [详细]
author-avatar
x洗不掉的思念
这个家伙很懒,什么也没留下!
PHP1.CN | 中国最专业的PHP中文社区 | DevBox开发工具箱 | json解析格式化 |PHP资讯 | PHP教程 | 数据库技术 | 服务器技术 | 前端开发技术 | PHP框架 | 开发工具 | 在线工具
Copyright © 1998 - 2020 PHP1.CN. All Rights Reserved | 京公网安备 11010802041100号 | 京ICP备19059560号-4 | PHP1.CN 第一PHP社区 版权所有