热门标签 | HotTags
当前位置:  开发笔记 > 后端 > 正文

最小二乘法的本质原理

最小二乘法的本质原理转自:http:blog.sina.com.cnsblog_5e6614220101ks63.html本文主要以最简单的二元线性函数为基础

最小二乘法的本质原理

  转自:http://blog.sina.com.cn/s/blog_5e6614220101ks63.html

    本文主要以最简单的二元线性函数为基础,阐述最小二乘法的原理,事实上,最小二乘法可以更广泛地应用于非线性方程中,但本文以介绍为主,希望能以最简单的形式,使读者能够掌握最小二乘法的意义。

在物理实验数据统计时,我们会记录一些数据,记做数据x和数据y。但是,在记录数据后,我们依然不知道x和y 的具体关系。例如,测算男人手掌面积和身高的关系,我们会得到两组数据,如图,

最小二乘法原理及极值点判定

               图1数据点分布

这并不是一条严格意义上的直线,但这些数据对于实验研究员来说,可以作为某种依据,从而判断出两种数据之间的关系。根据两个量的许多组观测数据来确定它们的函数曲线,这就是实验数据处理中的曲线拟合问题。

事实上,我们更关注的是如何才能找到这么一条漂亮的曲线。那么,找到这条曲线的方法称作“最小二乘法”。

曲线拟合中最基本和最常用的是直线拟合。设x和y之间的函数关系由直线方程

  y=ax+b给出。

式中有两个待定参数,b代表截距,a代表斜率。下面的问题在于,如何找到“最合适”的a和b使得尽可能多的数据落在或者更加靠近这条拟合出来的直线上。即数据对这条直线的逼近程度最佳。当然,当我们将直线拟合出来之后,就可以反过来进行预测了。所以说最小二乘法是很有用的一种测算方法。

实际上,我们并不关心x和y到底是多少,因为x和y是给定的,当然x和y与其本质的内在关系之间肯定存在误差。我们关心的是方程中的a和b,也就是说,在这个待定的方程中,a和b才是所求的变量,它们可以描述出x和y的关系。 所以我们接下来的任务就是找到一组最好的a和b。

我们对a和b的要求就是,使得所有x和y相对拟合直线的误差总和最小。也就是说,我们要考虑的是,要使这些数据点距离拟合直线的和最小,距离最短,这样就可以使得尽可能多的数据成为有效点。

接下来我们的工作就是,最小化误差了。

最小二成法就此登场。

最小二乘法名字的缘由有两个,一是我们要将误差最小化,二是我们将误差最小化的方法是使误差的平方和最小化。误差最小化的原因前已述及,用误差平方和最小化来约束误差的原因是要规避负数对计算的影响。

接下来我们要做的就是使误差的平方和最小了。

对试验数据最小二乘法原理及极值点判定,使得最小二乘法原理及极值点判定最小,根据二元函数取极值,可知,须最小二乘法原理及极值点判定成立,

则  最小二乘法原理及极值点判定

 

联立得最小二乘法原理及极值点判定

      最小二乘法原理及极值点判定  

 

接下来求解a和b,就可以了。

问题又来了,以上求极值的方法只能保证所求的点是驻点(临界点),我们知道,多元函数的驻点可以分为三类,即极小点、极大点和鞍点。

 

最小二乘法原理及极值点判定

             图2鞍点

最小二乘法原理及极值点判定 

             图3极小点

我们至此还不能说明这就是我们要找的最优解,因为驻点有可能是极小点也有可能是鞍点或者是极大点。所以我们接下来要证明所求是满足要求的极小点。

 

极值点的判定

 

设函数最小二乘法原理及极值点判定,假设a不为零,则

最小二乘法原理及极值点判定

  最小二乘法原理及极值点判定

  最小二乘法原理及极值点判定

这样,我们就把原式改写成了平方和/差的形式了。但我们还不知道到底是平方和还是平方差,这取决于平方项的系数。

下面分三种情况讨论:

若4ac-b^2<0&#xff0c;则二次项系数一正一负&#xff0c;临界点是鞍点。

若4ac-b^2&#61;0&#xff0c;则只有一个平方项&#xff0c;这就意味着函数临界点只受到一个方向的约束&#xff0c;另一个方向发生了退化&#xff0c;不起作用了&#xff0c;如图&#xff0c;

最小二乘法原理及极值点判定

      图4 退化后的极值点

若4ac-b^2>0&#xff0c;这时会有两个平方项的系数都是正&#xff0c;此时w必能取到极值。当a>0时取极大值&#xff1b;当a<0时取取极小值。

由于通常情况下&#xff0c;我们求解释不可能有如此规范的方程形式&#xff0c;所以我们要引入二阶导数&#xff0c;再用以上方法判断临界点的类型。

(1) 二元函数的极值一定在临界点和不可导取得。对于不可导点&#xff0c;难以判断是否是极值点&#xff1b;对于驻点可用极值的充分条件判定。

(2)二元函数取得极值的必要条件&#xff1a; 设最小二乘法原理及极值点判定在点最小二乘法原理及极值点判定处可微分且在点最小二乘法原理及极值点判定处有极值&#xff0c;则最小二乘法原理及极值点判定&#xff0c;最小二乘法原理及极值点判定&#xff0c;即最小二乘法原理及极值点判定是驻点。

(3) 二元函数取得极值的充分条件&#xff1a;设最小二乘法原理及极值点判定最小二乘法原理及极值点判定的某个领域内有连续上二阶偏导数&#xff0c;且最小二乘法原理及极值点判定最小二乘法原理及极值点判定&#xff0c;令最小二乘法原理及极值点判定&#xff0c;最小二乘法原理及极值点判定&#xff0c;最小二乘法原理及极值点判定&#xff0c;则

最小二乘法原理及极值点判定且 A<0时&#xff0c;f最小二乘法原理及极值点判定为极大值&#xff1b;

最小二乘法原理及极值点判定且A>0&#xff0c;f最小二乘法原理及极值点判定为极小值&#xff1b;

最小二乘法原理及极值点判定时&#xff0c;最小二乘法原理及极值点判定是鞍点&#xff1b;

当B2&#xff0d;AC &#61; 0时&#xff0c;函数z &#61; f (x, y)在点最小二乘法原理及极值点判定可能有极值&#xff0c;也可能没有极值&#xff0c;这里不做讨论了。

最后&#xff0c;我们将原始方法和二阶导方法做一个联系&#xff0c;事实上&#xff0c;二阶导的方法是原始方法的进化版本。

最小二乘法原理及极值点判定求导&#xff0c;得

 

最小二乘法原理及极值点判定

最小二乘法原理及极值点判定

最小二乘法原理及极值点判定
最小二乘法原理及极值点判定

最小二乘法原理及极值点判定
    将求二阶导方法中的A、B、C与原始方法中的a、b、c建立联系&#xff0c;得

A&#61;2a

B&#61;b

C&#61;2c

从而得到AC&#61;4ac-b^2&#xff0c;可见两种方法等效。


转载于:https://www.cnblogs.com/Baron-Lu/p/9878693.html


推荐阅读
  • 本文详细探讨了使用Python3编写爬虫时如何应对网站的反爬虫机制,通过实例讲解了如何模拟浏览器访问,帮助读者更好地理解和应用相关技术。 ... [详细]
  • 本文介绍了 Go 语言中的高性能、可扩展、轻量级 Web 框架 Echo。Echo 框架简单易用,仅需几行代码即可启动一个高性能 HTTP 服务。 ... [详细]
  • WCF类型共享的最佳实践
    在使用WCF服务时,经常会遇到同一个实体类型在不同服务中被生成为不同版本的问题。本文将介绍几种有效的类型共享方法,以解决这一常见问题。 ... [详细]
  • Cookie学习小结
    Cookie学习小结 ... [详细]
  • 本文将深入探讨 iOS 中的 Grand Central Dispatch (GCD),并介绍如何利用 GCD 进行高效多线程编程。如果你对线程的基本概念还不熟悉,建议先阅读相关基础资料。 ... [详细]
  • python模块之正则
    re模块可以读懂你写的正则表达式根据你写的表达式去执行任务用re去操作正则正则表达式使用一些规则来检测一些字符串是否符合个人要求,从一段字符串中找到符合要求的内容。在 ... [详细]
  • 深入解析Django CBV模型的源码运行机制
    本文详细探讨了Django CBV(Class-Based Views)模型的源码运行流程,通过具体的示例代码和详细的解释,帮助读者更好地理解和应用这一强大的功能。 ... [详细]
  • C#实现文件的压缩与解压
    2019独角兽企业重金招聘Python工程师标准一、准备工作1、下载ICSharpCode.SharpZipLib.dll文件2、项目中引用这个dll二、文件压缩与解压共用类 ... [详细]
  • 短暂的人生中,IT和技术只是其中的一部分。无论换工作还是换行业,最终的目标是成功、荣誉和收获。本文探讨了技术人员如何跳出纯技术的局限,实现更大的职业发展。 ... [详细]
  • 智能制造数据综合分析与应用解决方案
    在智能制造领域,生产数据通过先进的采集设备收集,并利用时序数据库或关系型数据库进行高效存储。这些数据经过处理后,通过可视化数据大屏呈现,为生产车间、生产控制中心以及管理层提供实时、精准的信息支持,助力不同应用场景下的决策优化和效率提升。 ... [详细]
  • 如何配置VisualSVN以确保提交时必须填写日志信息
    在软件开发团队中,成员们有时会忘记在提交代码时添加必要的备注信息。为了规范这一流程,可以通过配置VisualSVN来强制要求团队成员在提交文件时填写日志信息。本文将详细介绍如何设置这一功能。 ... [详细]
  • 小程序的授权和登陆
    小程序的授权和登陆 ... [详细]
  • 本文介绍 DB2 中的基本概念,重点解释事务单元(UOW)和事务的概念。事务单元是指作为单个原子操作执行的一个或多个 SQL 查询。 ... [详细]
  • 本文详细介绍了区块链系统的架构,并附有清晰的架构图,帮助读者更好地理解区块链的工作原理和技术细节。 ... [详细]
  • 基于Java和SSM框架的志愿者管理平台源代码分析与实现
    本研究针对基于Java和SSM框架的志愿者管理平台进行了详细的源代码分析与实现。该平台属于Java Web项目,采用Java EE技术栈,并结合了Spring、Spring MVC和MyBatis三大核心框架(非开源)。项目名称为“基于SSM的志愿者管理系统”,旨在提升志愿者管理的效率和规范性。通过对系统架构、模块设计及关键代码的深入解析,本文为开发者提供了全面的技术参考和实践指导。 ... [详细]
author-avatar
sunsijia
业精于勤荒于嬉
PHP1.CN | 中国最专业的PHP中文社区 | DevBox开发工具箱 | json解析格式化 |PHP资讯 | PHP教程 | 数据库技术 | 服务器技术 | 前端开发技术 | PHP框架 | 开发工具 | 在线工具
Copyright © 1998 - 2020 PHP1.CN. All Rights Reserved | 京公网安备 11010802041100号 | 京ICP备19059560号-4 | PHP1.CN 第一PHP社区 版权所有