热门标签 | HotTags
当前位置:  开发笔记 > 前端 > 正文

自己动手实现深度学习框架8RNN文本分类和文本生成模型

代码仓库:https:github.combrandonlygcute-dl目标    上阶段cute-dl已经可以构建基础的RNN模型。但对文本相模型的支持不够友好,这个阶段的目

代码仓库: https://github.com/brandonlyg/cute-dl


目标

        上阶段cute-dl已经可以构建基础的RNN模型。但对文本相模型的支持不够友好, 这个阶段的目标是, 让框架能够友好地支持文本分类和本文生成任务。具体包括:



  1. 添加嵌入层, 为文本寻找高效的向量表示。

  2. 添加类别抽样函数, 根据模型输出的类别分布抽样得到生成的文本。

  3. 使用imdb-review数据集验证文本分类模型。

  4. 使用一个古诗数据集验证文本生成模型。

        这阶段涉及到的代码比较简单因此接下来会重点描述RNN语言相关模型中涉及到的数学原理和工程方法。


数学原理

文本分类模型

        可以把文本看成是一个词的序列\(W=[w_1, w_2, ..., w_T]\), 在训练数据集中每个文本属于一个类别\(a_i\), \(a_i∈A\), 集合 \(A = \{ a_1, a_2, ..., a_k \}\) 是一个类别别集合. 分类模型要做的是给定一个文本W, 计算所有类别的后验概率:

\[P(a_i|W) = P(a_i|w_1,w_2,...,w_T), \quad i=1,2,...k
\]

        那么文本序列W的类别为:

\[a = arg \max_{a_i} P(a_i|w_1,w_2,...,w_T)
\]

        即在给定文本的条件下, 具有最大后验概率的类别就是文本序列W所属的类别.


文本预测模型

        设任意一个文本序列为\(W=[w_1,w_2,...,W_T]\), 任意一个词\(w_i ∈ V\), V是所有词汇的集合,也叫词汇表, 这里需要强调的是\(w_i\)在V中是无序的, 但在W中是有序的, 文本预测的任务是, 计算任意一个词\(w_i ∈ V\)在给定一个序列中的任意一个位置出现的概率:

\[P(w_1,...,W_T) = ∏_{t=1}^T P(w_t|w_1,...,w_{t-1})
\]

        文本预测输出一个\(w_i ∈ V\)的分布列, 根据这个分布列从V中抽取一个词即为预测结果。不同于分类任务,这里不是取概率最大的词, 这里的预测结果是某个词出现的在一个序列特定位置的个概率,只要概率不是0都有可能出现,所以要用抽样的方法确定某次预测的结果。


词的数字化表示

        任意一条数据在送入模型之前都要表示为一个数字化的向量, 文本数据也不例外。一个文本可以看成词的序列,因此只要把词数字化了,文本自然也就数字化了。对于词来说,最简单的方式是用词在词汇表中的唯一ID来表示, ID需要遵守两个最基本的规则:



  1. 每个词的ID在词汇表中必须是唯一的.

  2. 每个词的ID一旦确定不能变化.

        这种表示很难表达词之间的关系, 例如: 在词汇表中把"好"的ID指定为100, 如果希望ID能够反映词意的关系, 需要把"好"的近意词: "善", "美", "良", "可以"编码为98, 99, 101, 102. 目前为止这看起还行. 如果还希望ID能够反映词之间的语法关系, "好"前后经常出现的词: "友", "人", "的", 这几个词的ID就很难选择, 不论怎样, 都会发现两个词它们在语义和语法上的关系都很远,但ID却很接近。这也说明了标量的表达能力很有限,无法表达多个维度的关系。为了能够表达词之间多个维度的的关系,多维向量是一个很好的选择. 向量之间的夹大小衡量它们之间的关系:

\[cos(θ) = \frac{}{|A||B|}
\]

        对于两个向量A, B使用它们的点积, 模的乘积就能得到夹角θ余弦值。当cos(θ)->1表示两个向量的相似度高, cos(θ)->0 表示两个向量是不相关的, cos(θ)->-1 表示两个向量是相反的。

        把词的ID转换成向量,最简单的办法是使用one-hot编码, 这样得到的向量有两个问题:



  1. 任意两个向量A,B, =0, 夹角的余弦值cos(θ)=0, 不能表达词之间的关系.

  2. 向量的维度等于词汇表的大小, 而且是稀疏向量,这和导致模型有大量的参数,模型训练过程的运算量也很大.

        词嵌入技术就是为解决词表示的问题而提出的。词嵌入把词ID映射到一个合适维度的向量空间中, 在这个向量空间中为每个ID分配一个唯一的向量, 把这些向量当成参数看待, 在特定任务的模型中学习这些参数。当模型训练完成后, 这些向量就是词在这个特定任务中的一个合适的表示。词嵌入向量的训练步骤有:



  1. 收集训练数据集中的词汇, 构建词汇表。

  2. 为词汇表中的每个词分配一个唯一的ID。假设词汇表中的词汇量是N, 词ID的取值为:0,1,2,...,N-1, 对人任意一个0
  3. 随机初始化N个D维嵌入向量, 向量的索引为0,1,2,...,N-1. 这样词ID就成了向量的索引.

  4. 定义一个模型, 把嵌入向量作为模型的输入层参与训练.

  5. 训练模型.


嵌入层实现

        代码: cutedl/rnn_layers.py, Embedding类.

        初始化嵌入向量, 嵌入向量使用(-1, 1)区间均匀分布的随机变量初始化:

'''
dims 嵌入向量维数
vocabulary_size 词汇表大小
need_train 是否需要训练嵌入向量
'''
def __init__(self, dims, vocabulary_size, need_train=True):
#初始化嵌入向量
initializer = self.weight_initializers['uniform']
self.__vecs = initializer((vocabulary_size, dims))
super().__init__()
self.__params = None
if need_train:
self.__params = []
self.__cur_params = None
self.__in_batch = None

        初始化层参数时把所有的嵌入向量变成参与训练的参数:

def init_params(self):
if self.__params is None:
return
voc_size, _ = self.__vecs.shape
for i in range(voc_size):
pname = 'weight_%d'%i
p = LayerParam(self.name, pname, self.__vecs[i])
self.__params.append(p)

        向前传播时, 把形状为(m, t)的数据转换成(m, t, n)形状的数据, 其中t是序列长度, n是嵌入向量的维数.

'''
in_batch shape=(m, T)
return shape (m, T, dims)
'''
def forward(self, in_batch, training):
m,T = in_batch.shape
outshape = (m, T, self.outshape[-1])
out = np.zeros(outshape)
#得到每个序列的嵌入向量表示
for i in range(m):
out[i] = self.__vecs[in_batch[i]]
if training and self.__params is not None:
self.__in_batch = in_batch
return out

        反向传播时只关注当前批次使用到的向量, 注意同一个向量可能被多次使用, 需要累加同一个嵌入向量的梯度.

def backward(self, gradient):
if self.__params is None:
return
#pdb.set_trace()
in_batch = self.__in_batch
params = {}
m, T, _ = gradient.shape
for i in range(m):
for t in range(T):
grad = gradient[i, t]
idx = self.__in_batch[i, t]
#更新当前训练批次的梯度
if idx not in params:
#当前批次第一次发现该嵌入向量
params[idx] = self.__params[idx]
params[idx].gradient = grad
else:
#累加当前批次梯度
params[idx].gradient += grad
self.__cur_params = list(params.values())

验证

imdb-review数据集上的分类模型

        代码: examples/rnn/text_classify.py.

        数据集下载地址: https://pan.baidu.com/s/13spS_Eac_j0uRvCVi7jaMw 密码: ou26


数据集处理

        数据集处理时有几个需要注意的地方:



  1. imdb-review数据集由长度不同的文本构成, 送入模型的数据形状为(m, t, n), 至少要求一个批次中的数据具有相同的序列长度, 因此在对数据进行分批时, 对数据按批次填充.

  2. 一般使用0为填充编码. 在构建词汇表时, 假设有v个词汇, 词汇的编码为1,2,...,v.

  3. 由于对文本进行分词, 编码比较耗时。可以把编码后的数据保存起来,作为数据集的预处理数据, 下次直接加载使用。


模型

def fit_gru():
print("fit gru")
model = Model([
rnn.Embedding(64, vocab_size+1),
wrapper.Bidirectional(rnn.GRU(64), rnn.GRU(64)),
nn.Filter(),
nn.Dense(64),
nn.Dropout(0.5),
nn.Dense(1, activation='linear')
])
model.assemble()
fit('gru', model)

        训练报告:

这个模型和tensorflow给出的模型略有差别, 少了一个RNN层wrapper.Bidirectional(rnn.GRU(32), rnn.GRU(32)), 这个模型经过16轮的训练达到了tensorflow模型的水平.


文本生成模型

        我自己收集了一个古由诗词构成的小型数据集, 用来验证文本生成模型. 代码: examples/rnn/text_gen.py.

        数据集下载地址: https://pan.baidu.com/s/14oY_wol0d9hE_9QK45IkzQ 密码: 5f3c

        模型定义:

def fit_gru():
vocab_size = vocab.size()
print("vocab size: ", vocab_size)
model = Model([
rnn.Embedding(256, vocab_size),
rnn.GRU(1024, stateful=True),
nn.Dense(1024),
nn.Dropout(0.5),
nn.Dense(vocab_size, activation='linear')
])
model.assemble()
fit("gru", model)

        训练报告:

        生成七言诗:

def gen_text():
mpath = model_path+"gru"
model = Model.load(mpath)
print("loadding model finished")
outshape = (4, 7)
print("vocab size: ", vocab.size())
def do_gen(txt):
#编码
#pdb.set_trace()
res = vocab.encode(sentence=txt)
m, n = outshape
for i in range(m*n - 1):
in_batch = np.array(res).reshape((1, -1))
preds = model.predict(in_batch)
#取最后一维的预测结果
preds = preds[:, -1]
outs = dlmath.categories_sample(preds, 1)
res.append(outs[0,0])
#pdb.set_trace()
txt = ""
for i in range(m):
txt = txt + ''.join(vocab.decode(res[i*n:(i+1)*n])) + "\n"
return txt
starts = ['云', '故', '画', '花']
for txt in starts:
model.reset()
res = do_gen(txt)
print(res)

        生成的文本:

云填缆首月悠觉
缆濯醉二隐隐白
湖杖雨遮双雨乡
焉秣都沧枫寓功
故民民时都人把
陈雨积存手菜破
好缆帘二龙藕却
趣晚城矣中村桐
画和春觉上盖骑
满楚事胜便京兵
肯霆唇恨朔上杨
志月随肯八焜著
花夜维他客陈月
客到夜狗和悲布
关欲掺似瓦阔灵
山商过墙滩幽惘

        是不是很像李商隐的风格?



推荐阅读
  • 深入理解SAP Fiori及其核心概念
    本文详细介绍了SAP Fiori的基本概念、发展历程、核心特性、应用类型、运行环境以及开发工具等,旨在帮助读者全面了解SAP Fiori的技术框架和应用场景。 ... [详细]
  • 本文总结了在使用React Native开发过程中遇到的一些常见问题及其解决方法,包括配置错误、依赖问题和特定组件的使用技巧。 ... [详细]
  • 图神经网络模型综述
    本文综述了图神经网络(Graph Neural Networks, GNN)的发展,从传统的数据存储模型转向图和动态模型,探讨了模型中的显性和隐性结构,并详细介绍了GNN的关键组件及其应用。 ... [详细]
  • Python安全实践:Web安全与SQL注入防御
    本文旨在介绍Web安全的基础知识,特别是如何使用Python和相关工具来识别和防止SQL注入攻击。通过实际案例分析,帮助读者理解SQL注入的危害,并掌握有效的防御策略。 ... [详细]
  • Web3隐私协议Manta Network与区块链互操作性平台Axelar达成战略合作,共同推进跨链资产的隐私保护。 ... [详细]
  • 贝叶斯方法的核心理念
    在探索概率深度学习的过程中,理解贝叶斯方法是至关重要的一步。本文旨在深入探讨贝叶斯方法的基本理念及其在深度学习中的应用,通过实例解析贝叶斯公式的内涵。 ... [详细]
  • 本文详细介绍了如何利用go-zero框架从需求分析到最终部署至Kubernetes的全过程,特别聚焦于微服务架构中的网关设计与实现。项目采用了go-zero及其生态组件,涵盖了从API设计到RPC调用,再到生产环境下的监控与维护等多方面内容。 ... [详细]
  • 解决IntelliJ IDEA编辑配置选项消失问题
    本文介绍如何在IntelliJ IDEA中恢复意外消失的编辑配置选项,适用于2020.3.4版本用户遇到的相关问题。 ... [详细]
  • 深入解析 Git 代码提交流程及常见问题处理
    本文详细阐述了使用 Git 进行代码提交的具体步骤,并提供了遇到常见问题时的解决方案,旨在帮助开发者更加高效地管理代码。 ... [详细]
  • 本文详细介绍了`org.kie.workbench.common.stunner.bpmn.definition.UserTask.getGeneral()`方法的使用场景和具体实现,并提供了多个实际代码示例,帮助开发者更好地理解和应用该方法。 ... [详细]
  • 本文提供了详细的步骤,指导用户如何下载并安装 Git 的中文语言包,以提升用户体验。 ... [详细]
  • 计算机视觉初学者指南:如何顺利入门
    本文旨在为计算机视觉领域的初学者提供一套全面的入门指南,涵盖基础知识、技术工具、学习资源等方面,帮助读者快速掌握计算机视觉的核心概念和技术。 ... [详细]
  • 本文详细介绍了如何通过配置 Chrome 和 VS Code 来实现对 Vue 项目的高效调试。步骤包括启用 Chrome 的远程调试功能、安装 VS Code 插件以及正确配置 launch.json 文件。 ... [详细]
  • MVC框架下使用DataGrid实现时间筛选与枚举填充
    本文介绍如何在ASP.NET MVC项目中利用DataGrid组件增强搜索功能,具体包括使用jQuery UI的DatePicker插件添加时间筛选条件,并通过枚举数据填充下拉列表。 ... [详细]
  • 酷家乐 Serverless FaaS 产品实践探索
    本文探讨了酷家乐在 Serverless FaaS 领域的实践与经验,重点介绍了 FaaS 平台的构建、业务收益及未来发展方向。 ... [详细]
author-avatar
楼下地小黑
这个家伙很懒,什么也没留下!
PHP1.CN | 中国最专业的PHP中文社区 | DevBox开发工具箱 | json解析格式化 |PHP资讯 | PHP教程 | 数据库技术 | 服务器技术 | 前端开发技术 | PHP框架 | 开发工具 | 在线工具
Copyright © 1998 - 2020 PHP1.CN. All Rights Reserved | 京公网安备 11010802041100号 | 京ICP备19059560号-4 | PHP1.CN 第一PHP社区 版权所有