代码仓库: https://github.com/brandonlyg/cute-dl
上阶段cute-dl已经可以构建基础的RNN模型。但对文本相模型的支持不够友好, 这个阶段的目标是, 让框架能够友好地支持文本分类和本文生成任务。具体包括:
这阶段涉及到的代码比较简单因此接下来会重点描述RNN语言相关模型中涉及到的数学原理和工程方法。
可以把文本看成是一个词的序列\(W=[w_1, w_2, ..., w_T]\), 在训练数据集中每个文本属于一个类别\(a_i\), \(a_i∈A\), 集合 \(A = \{ a_1, a_2, ..., a_k \}\) 是一个类别别集合. 分类模型要做的是给定一个文本W, 计算所有类别的后验概率:
\[P(a_i|W) = P(a_i|w_1,w_2,...,w_T), \quad i=1,2,...k
\]
那么文本序列W的类别为:
\[a = arg \max_{a_i} P(a_i|w_1,w_2,...,w_T)
\]
即在给定文本的条件下, 具有最大后验概率的类别就是文本序列W所属的类别.
设任意一个文本序列为\(W=[w_1,w_2,...,W_T]\), 任意一个词\(w_i ∈ V\), V是所有词汇的集合,也叫词汇表, 这里需要强调的是\(w_i\)在V中是无序的, 但在W中是有序的, 文本预测的任务是, 计算任意一个词\(w_i ∈ V\)在给定一个序列中的任意一个位置出现的概率:
\[P(w_1,...,W_T) = ∏_{t=1}^T P(w_t|w_1,...,w_{t-1})
\]
文本预测输出一个\(w_i ∈ V\)的分布列, 根据这个分布列从V中抽取一个词即为预测结果。不同于分类任务,这里不是取概率最大的词, 这里的预测结果是某个词出现的在一个序列特定位置的个概率,只要概率不是0都有可能出现,所以要用抽样的方法确定某次预测的结果。
任意一条数据在送入模型之前都要表示为一个数字化的向量, 文本数据也不例外。一个文本可以看成词的序列,因此只要把词数字化了,文本自然也就数字化了。对于词来说,最简单的方式是用词在词汇表中的唯一ID来表示, ID需要遵守两个最基本的规则:
这种表示很难表达词之间的关系, 例如: 在词汇表中把"好"的ID指定为100, 如果希望ID能够反映词意的关系, 需要把"好"的近意词: "善", "美", "良", "可以"编码为98, 99, 101, 102. 目前为止这看起还行. 如果还希望ID能够反映词之间的语法关系, "好"前后经常出现的词: "友", "人", "的", 这几个词的ID就很难选择, 不论怎样, 都会发现两个词它们在语义和语法上的关系都很远,但ID却很接近。这也说明了标量的表达能力很有限,无法表达多个维度的关系。为了能够表达词之间多个维度的的关系,多维向量是一个很好的选择. 向量之间的夹大小衡量它们之间的关系:
\[cos(θ) = \frac{}{|A||B|}
\]
对于两个向量A, B使用它们的点积, 模的乘积就能得到夹角θ余弦值。当cos(θ)->1表示两个向量的相似度高, cos(θ)->0 表示两个向量是不相关的, cos(θ)->-1 表示两个向量是相反的。
把词的ID转换成向量,最简单的办法是使用one-hot编码, 这样得到的向量有两个问题:
词嵌入技术就是为解决词表示的问题而提出的。词嵌入把词ID映射到一个合适维度的向量空间中, 在这个向量空间中为每个ID分配一个唯一的向量, 把这些向量当成参数看待, 在特定任务的模型中学习这些参数。当模型训练完成后, 这些向量就是词在这个特定任务中的一个合适的表示。词嵌入向量的训练步骤有:
代码: cutedl/rnn_layers.py, Embedding类.
初始化嵌入向量, 嵌入向量使用(-1, 1)区间均匀分布的随机变量初始化:
'''
dims 嵌入向量维数
vocabulary_size 词汇表大小
need_train 是否需要训练嵌入向量
'''
def __init__(self, dims, vocabulary_size, need_train=True):
#初始化嵌入向量
initializer = self.weight_initializers['uniform']
self.__vecs = initializer((vocabulary_size, dims))
super().__init__()
self.__params = None
if need_train:
self.__params = []
self.__cur_params = None
self.__in_batch = None
初始化层参数时把所有的嵌入向量变成参与训练的参数:
def init_params(self):
if self.__params is None:
return
voc_size, _ = self.__vecs.shape
for i in range(voc_size):
pname = 'weight_%d'%i
p = LayerParam(self.name, pname, self.__vecs[i])
self.__params.append(p)
向前传播时, 把形状为(m, t)的数据转换成(m, t, n)形状的数据, 其中t是序列长度, n是嵌入向量的维数.
'''
in_batch shape=(m, T)
return shape (m, T, dims)
'''
def forward(self, in_batch, training):
m,T = in_batch.shape
outshape = (m, T, self.outshape[-1])
out = np.zeros(outshape)
#得到每个序列的嵌入向量表示
for i in range(m):
out[i] = self.__vecs[in_batch[i]]
if training and self.__params is not None:
self.__in_batch = in_batch
return out
反向传播时只关注当前批次使用到的向量, 注意同一个向量可能被多次使用, 需要累加同一个嵌入向量的梯度.
def backward(self, gradient):
if self.__params is None:
return
#pdb.set_trace()
in_batch = self.__in_batch
params = {}
m, T, _ = gradient.shape
for i in range(m):
for t in range(T):
grad = gradient[i, t]
idx = self.__in_batch[i, t]
#更新当前训练批次的梯度
if idx not in params:
#当前批次第一次发现该嵌入向量
params[idx] = self.__params[idx]
params[idx].gradient = grad
else:
#累加当前批次梯度
params[idx].gradient += grad
self.__cur_params = list(params.values())
代码: examples/rnn/text_classify.py.
数据集下载地址: https://pan.baidu.com/s/13spS_Eac_j0uRvCVi7jaMw 密码: ou26
数据集处理时有几个需要注意的地方:
def fit_gru():
print("fit gru")
model = Model([
rnn.Embedding(64, vocab_size+1),
wrapper.Bidirectional(rnn.GRU(64), rnn.GRU(64)),
nn.Filter(),
nn.Dense(64),
nn.Dropout(0.5),
nn.Dense(1, activation='linear')
])
model.assemble()
fit('gru', model)
训练报告:
这个模型和tensorflow给出的模型略有差别, 少了一个RNN层wrapper.Bidirectional(rnn.GRU(32), rnn.GRU(32)), 这个模型经过16轮的训练达到了tensorflow模型的水平.
我自己收集了一个古由诗词构成的小型数据集, 用来验证文本生成模型. 代码: examples/rnn/text_gen.py.
数据集下载地址: https://pan.baidu.com/s/14oY_wol0d9hE_9QK45IkzQ 密码: 5f3c
模型定义:
def fit_gru():
vocab_size = vocab.size()
print("vocab size: ", vocab_size)
model = Model([
rnn.Embedding(256, vocab_size),
rnn.GRU(1024, stateful=True),
nn.Dense(1024),
nn.Dropout(0.5),
nn.Dense(vocab_size, activation='linear')
])
model.assemble()
fit("gru", model)
训练报告:
生成七言诗:
def gen_text():
mpath = model_path+"gru"
model = Model.load(mpath)
print("loadding model finished")
outshape = (4, 7)
print("vocab size: ", vocab.size())
def do_gen(txt):
#编码
#pdb.set_trace()
res = vocab.encode(sentence=txt)
m, n = outshape
for i in range(m*n - 1):
in_batch = np.array(res).reshape((1, -1))
preds = model.predict(in_batch)
#取最后一维的预测结果
preds = preds[:, -1]
outs = dlmath.categories_sample(preds, 1)
res.append(outs[0,0])
#pdb.set_trace()
txt = ""
for i in range(m):
txt = txt + ''.join(vocab.decode(res[i*n:(i+1)*n])) + "\n"
return txt
starts = ['云', '故', '画', '花']
for txt in starts:
model.reset()
res = do_gen(txt)
print(res)
生成的文本:
云填缆首月悠觉
缆濯醉二隐隐白
湖杖雨遮双雨乡
焉秣都沧枫寓功
故民民时都人把
陈雨积存手菜破
好缆帘二龙藕却
趣晚城矣中村桐
画和春觉上盖骑
满楚事胜便京兵
肯霆唇恨朔上杨
志月随肯八焜著
花夜维他客陈月
客到夜狗和悲布
关欲掺似瓦阔灵
山商过墙滩幽惘
是不是很像李商隐的风格?