热门标签 | HotTags
当前位置:  开发笔记 > 编程语言 > 正文

拯救万千学子于水深火热之中!Facebook开源无梯度优化工具

乾明发自凹非寺量子位出品|公众号QbitAI机器学习啥最苦?十有八九找参数!不少研究生,都被卡在这个环节上,久久不能毕业。现
乾明 发自 凹非寺
量子位 出品 | 公众号 QbitAI

机器学习啥最苦?十有八九找参数!

不少研究生,都被卡在这个环节上,久久不能毕业。

现在,圣诞节前,有了一个好消息!

Facebook宣布,开源自家一直在使用的无梯度优化工具:Nevergrad

640?wx_fmt=gif

并“信誓旦旦”表示,这能让调整模型参数和超参数的过程变得更快、更容易。

但在Twitter上,仿佛起到了相反的效果。

有人看到这个消息之后,立马“梗”上心头:

NeverGraduate吗?

也有人调侃称,这绝对是那些博士读了6年的人心中的噩梦。

640?wx_fmt=png

不过,调侃归调侃,人家可是货真价实的NeverGradient。

大多数人还是用转发、点赞表达了自己的态度。

640?wx_fmt=png

这是个什么东东?

简单来说, 这是一个Python 3库,里面有很多不需要进行梯度计算的算法。这些算法有:

  • 差分进化

  • 序列二次规划

  • FastGA

  • 协方差矩阵自适应

  • 用于噪声管理的种群控制方法

  • 粒子群优化

  • ……

它们都呈现在了一个标准的ask-and-tell Python框架中,同时,Facebook还配备了相关的测试和评估工具。

有没有一种热泪盈眶的感觉?

640?wx_fmt=png

先别急……来看看效果怎么样。

拿起来就能用

就先从上面提到的算法来说吧。之前这些算法都是定制的,想要比较一个任务中各种算法的性能?要么行不通,要么得花大力气。

Facebook表示,有了Nevergrad,这些都不是问题。只要有用得着它的地方,拿起来就能用。

不仅能够比较不同方法的性能,还能与那些常用基准上的最先进水平进行比较,以及帮你为特定的用例找最好的优化方法。

640?wx_fmt=jpeg

应用场景很感人

先说Facebook的情况。博文中说,自家的研究团队已经在强化学习、图像生成以及各种各样的项目中使用Nevergrad了。

而且,Nevergrad的无梯度优化,还能广泛运用于各种机器学习问题。比如:

  • 多模态问题,比如有几个最小值的问题。 (例如,语言建模深度学习的超参数化。)

  • 病态问题,在试图优化几个具有非常不同动态的变量时,通常会出现这种问题。(例如,没有针对具体问题重新标定dropout和学习率。)

  • 可分离或旋转的问题,包括部分旋转的问题。

  • 部分可分离问题,可以考虑通过几个变量块来解决。 例子包括对深度学习或其他形式设计的架构搜索,以及多任务网络的参数化。

  • 离散、连续或混合的问题。这些任务需要同时选择每层的学习速率、每层的权重衰减以及每层的非线性类型。

  • 有噪声的问题,当使用完全相同的参数调用函数时,函数可以返回不同的结果,例如强化学习中的独立事件。

来,总结一下。

在机器学习中,Nevergrad可来调整超参数,如学习速率、动量、权重衰减(可能是每层)、 dropout和深层网络的每一部分的层参数等。

但从无梯度方法的角度来说,它也可以应用到电网管理、航空、镜头设计以及许多其他科学和工程中。

为了证明Nevergrad的能力。Facebook的团队使用 Nevergrad 实现了几个基准测试。

硬核示例:用Nevergrad生成算法基准

不同的例子对应于不同的设置(是否多模态,是否有噪声,是否离散,是否病态) ,并展示了如何使用Nevergrad确定最佳优化算法。

在每个基准测试中,他们对不同的x值进行了独立的实验。这确保了方法之间在几个x值上的一致排名具有统计学意义。

640?wx_fmt=png

噪声最优化示例

这个示例显示,使用pcCMSA - ES的噪声管理方法的TBPSA优于其他几种替代方案。

具体怎么比较的,Facebook在GitHub上开源了,传送门在文末。

Nevergrad也可以处理离散的目标函数,在许多机器学习案例中都会遇到这个问题。

例如,在有限的选项集(如神经网络中的激活函数)之间进行选择,以及在不同类型的层之间进行选择(例如,决定在网络中的某个位置是否需要跳过连接)。

现有的一些工具,比如Bbob和Cutest不包含任何离散的基准测试。但Nevergrad可以处理离散域。

方法有两个,一是通过softmax函数(将离散问题转化为有噪声的连续问题),二是通过连续变量的离散化。

Facebook还专门做了一个测试。

640?wx_fmt=png

如上图,测试中FastGA在这种情况下表现最好。有一点,DoubleFastGA对应于1/dim和( dim - 1 ) / dim之间的突变率,而不是1/dim和1/2。这是因为,原始范围对应的是一个二进制域,而在这里,Facebook考虑的是任意域。

好,到此,该说的都说了。

请收好传送门吧~

传送门

Nevergrad项目地址:

https://github.com/facebookresearch/nevergrad

博客地址:

https://code.fb.com/ai-research/nevergrad/

噪声最优化示例项目地址:

https://github.com/facebookresearch/nevergrad/blob/master/docs/benchmarks.md

作者系网易新闻·网易号“各有态度”签约作者


加入社群

量子位AI社群开始招募啦,欢迎对AI感兴趣的同学,在量子位公众号(QbitAI)对话界面回复关键字“交流群”,获取入群方式;


此外,量子位专业细分群(自动驾驶、CV、NLP、机器学习等)正在招募,面向正在从事相关领域的工程师及研究人员。


进专业群请在量子位公众号(QbitAI)对话界面回复关键字“专业群”,获取入群方式。(专业群审核较严,敬请谅解)

诚挚招聘

量子位正在招募编辑/记者,工作地点在北京中关村。期待有才气、有热情的同学加入我们!相关细节,请在量子位公众号(QbitAI)对话界面,回复“招聘”两个字。

640?wx_fmt=jpeg

量子位 QbitAI · 头条号签约作者

վ'ᴗ' ի 追踪AI技术和产品新动态


640?wx_fmt=gif

 好看吗?↘↘↘



推荐阅读
  • Coursera ML 机器学习
    2019独角兽企业重金招聘Python工程师标准线性回归算法计算过程CostFunction梯度下降算法多变量回归![选择特征](https:static.oschina.n ... [详细]
  • 尽管深度学习带来了广泛的应用前景,其训练通常需要强大的计算资源。然而,并非所有开发者都能负担得起高性能服务器或专用硬件。本文探讨了如何在有限的硬件条件下(如ARM CPU)高效运行深度神经网络,特别是通过选择合适的工具和框架来加速模型推理。 ... [详细]
  • Python 工具推荐 | PyHubWeekly 第二十一期:提升命令行体验的五大工具
    本期 PyHubWeekly 为大家精选了 GitHub 上五个优秀的 Python 工具,涵盖金融数据可视化、终端美化、国际化支持、图像增强和远程 Shell 环境配置。欢迎关注并参与项目。 ... [详细]
  • 本文深入探讨了基于Pairwise和Listwise方法的排序学习,结合PaddlePaddle平台提供的丰富运算组件,详细介绍了如何通过这些方法构建高效、精准的排序模型。文章不仅涵盖了基础理论,还提供了实际应用场景和技术实现细节。 ... [详细]
  • NVIDIA Titan RTX深度评测
    NVIDIA的Titan RTX被誉为当前最强大的桌面显卡之一,其卓越的性能和高昂的价格吸引了众多专业人士和技术爱好者的关注。本文将详细介绍Titan RTX的技术规格、性能表现及应用场景。 ... [详细]
  • 深入浅出TensorFlow数据读写机制
    本文详细介绍TensorFlow中的数据读写操作,包括TFRecord文件的创建与读取,以及数据集(dataset)的相关概念和使用方法。 ... [详细]
  • 解决PyCharm中安装PyTorch深度学习d2l包的问题
    本文详细介绍了如何在PyCharm中成功安装用于PyTorch深度学习的d2l包,包括环境配置、安装步骤及常见问题的解决方案。 ... [详细]
  • Python并行处理:提升数据处理速度的方法与实践
    本文探讨了如何利用Python进行数据处理的并行化,通过介绍Numba、多进程处理以及Pandas DataFrame上的并行操作等技术,旨在帮助开发者有效提高数据处理效率。 ... [详细]
  • Python库在GIS与三维可视化中的应用
    Python库极大地扩展了GIS的能力,使其能够执行复杂的数据科学任务。本文探讨了几个关键的Python库,这些库不仅增强了GIS的核心功能,还推动了地理信息系统向更高层次的应用发展。 ... [详细]
  • 在Ubuntu 16.04中使用Anaconda安装TensorFlow
    本文详细介绍了如何在Ubuntu 16.04系统上通过Anaconda环境管理工具安装TensorFlow。首先,需要下载并安装Anaconda,然后配置环境变量以确保系统能够识别Anaconda命令。接着,创建一个特定的Python环境用于安装TensorFlow,并通过指定的镜像源加速安装过程。最后,通过一个简单的线性回归示例验证TensorFlow的安装是否成功。 ... [详细]
  • FTX 闪崩,4 小时暴跌 80%,熊市的最后一跌?区块链已死?
    FTX 闪崩,4 小时暴跌 80%,熊市的最后一跌?区块链已死? ... [详细]
  • 解决C++编译错误C3867的方法
    本文详细介绍了在不同版本的Visual Studio中,如何正确处理成员函数指针以避免编译错误C3867。同时,提供了一个具体的代码示例及其优化方案。 ... [详细]
  • 使用Pandas高效读取SQL脚本中的数据
    本文详细介绍了如何利用Pandas直接读取和解析SQL脚本,提供了一种高效的数据处理方法。该方法适用于各种数据库导出的SQL脚本,并且能够显著提升数据导入的速度和效率。 ... [详细]
  • 本文探讨了Jeddict工具的应用价值,特别是在快速构建和部署CRUD服务系统方面的能力。通过介绍其核心功能和优势,以及当前的使用状况,文章还展望了Jeddict未来的改进方向。 ... [详细]
  • 微创新的力量:如何通过细微改变实现产品革新
    探讨为何大多数程序员难以晋升为架构师,并分析创新是否必须颠覆现有规则。本文基于《微创新:5种微小改变创造伟大产品》一书,深入解析创新的体系化方法及具体策略。 ... [详细]
author-avatar
前世梦0708
这个家伙很懒,什么也没留下!
PHP1.CN | 中国最专业的PHP中文社区 | DevBox开发工具箱 | json解析格式化 |PHP资讯 | PHP教程 | 数据库技术 | 服务器技术 | 前端开发技术 | PHP框架 | 开发工具 | 在线工具
Copyright © 1998 - 2020 PHP1.CN. All Rights Reserved | 京公网安备 11010802041100号 | 京ICP备19059560号-4 | PHP1.CN 第一PHP社区 版权所有