热门标签 | HotTags
当前位置:  开发笔记 > 编程语言 > 正文

在Bokehpython中创建雷达图的步骤是什么?

如何解决《在Bokehpython中创建雷达图的步骤是什么?》经验,为你挑选了1个好方法。

目标:在Bokeh python中创建雷达图

为了帮助您,这是我关注的图表类型:

我从Matplotlib 获得了这个图表示例,这可能有助于缩小解决方案上的差距,但是我看不到如何实现。

以下是我使用散景可以找到的最接近雷达图的示例:

from collections import OrderedDict
from math import log, sqrt

import numpy as np
import pandas as pd
from six.moves import cStringIO as StringIO

from bokeh.plotting import figure, show, output_file

antibiotics = """
bacteria,                        penicillin, streptomycin, neomycin, gram
Mycobacterium tuberculosis,      800,        5,            2,        negative
Salmonella schottmuelleri,       10,         0.8,          0.09,     negative
Proteus vulgaris,                3,          0.1,          0.1,      negative
Klebsiella pneumoniae,           850,        1.2,          1,        negative
Brucella abortus,                1,          2,            0.02,     negative
Pseudomonas aeruginosa,          850,        2,            0.4,      negative
Escherichia coli,                100,        0.4,          0.1,      negative
Salmonella (Eberthella) typhosa, 1,          0.4,          0.008,    negative
Aerobacter aerogenes,            870,        1,            1.6,      negative
Brucella antracis,               0.001,      0.01,         0.007,    positive
Streptococcus fecalis,           1,          1,            0.1,      positive
Staphylococcus aureus,           0.03,       0.03,         0.001,    positive
Staphylococcus albus,            0.007,      0.1,          0.001,    positive
Streptococcus hemolyticus,       0.001,      14,           10,       positive
Streptococcus viridans,          0.005,      10,           40,       positive
Diplococcus pneumoniae,          0.005,      11,           10,       positive
"""

drug_color = OrderedDict([
    ("Penicillin",   "#0d3362"),
    ("Streptomycin", "#c64737"),
    ("Neomycin",     "black"  ),
])

gram_color = {
    "positive" : "#aeaeb8",
    "negative" : "#e69584",
}

df = pd.read_csv(StringIO(antibiotics),
                 skiprows=1,
                 skipinitialspace=True,
                 engine='python')

width = 800
height = 800
inner_radius = 90
outer_radius = 300 - 10

minr = sqrt(log(.001 * 1E4))
maxr = sqrt(log(1000 * 1E4))
a = (outer_radius - inner_radius) / (minr - maxr)
b = inner_radius - a * maxr

def rad(mic):
    return a * np.sqrt(np.log(mic * 1E4)) + b

big_angle = 2.0 * np.pi / (len(df) + 1)
small_angle = big_angle / 7

p = figure(plot_",
    x_axis_type=None, y_axis_type=None,
    x_range=(-420, 420), y_range=(-420, 420),
    min_border=0, outline_line_color="black",
    background_fill_color="#f0e1d2", border_fill_color="#f0e1d2",
    toolbar_sticky=False)

p.xgrid.grid_line_color = None
p.ygrid.grid_line_color = None

# annular wedges
angles = np.pi/2 - big_angle/2 - df.index.to_series()*big_angle
colors = [gram_color[gram] for gram in df.gram]
p.annular_wedge(
    0, 0, inner_radius, outer_radius, -big_angle+angles, angles, color=colors,
)

# small wedges
p.annular_wedge(0, 0, inner_radius, rad(df.penicillin),
                -big_angle+angles+5*small_angle, -big_angle+angles+6*small_angle,
                color=drug_color['Penicillin'])
p.annular_wedge(0, 0, inner_radius, rad(df.streptomycin),
                -big_angle+angles+3*small_angle, -big_angle+angles+4*small_angle,
                color=drug_color['Streptomycin'])
p.annular_wedge(0, 0, inner_radius, rad(df.neomycin),
                -big_angle+angles+1*small_angle, -big_angle+angles+2*small_angle,
                color=drug_color['Neomycin'])

# circular axes and lables
labels = np.power(10.0, np.arange(-3, 4))
radii = a * np.sqrt(np.log(labels * 1E4)) + b
p.circle(0, 0, radius=radii, fill_color=None, line_color="white")
p.text(0, radii[:-1], [str(r) for r in labels[:-1]],
       text_font_size="8pt", text_align="center", text_baseline="middle")

# radial axes
p.annular_wedge(0, 0, inner_radius-10, outer_radius+10,
                -big_angle+angles, -big_angle+angles, color="black")

# bacteria labels
xr = radii[0]*np.cos(np.array(-big_angle/2 + angles))
yr = radii[0]*np.sin(np.array(-big_angle/2 + angles))
label_angle=np.array(-big_angle/2+angles)
label_angle[label_angle <-np.pi/2] += np.pi # easier to read labels on the left side
p.text(xr, yr, df.bacteria, angle=label_angle,
       text_font_size="9pt", text_align="center", text_baseline="middle")

# OK, these hand drawn legends are pretty clunky, will be improved in future release
p.circle([-40, -40], [-370, -390], color=list(gram_color.values()), radius=5)
p.text([-30, -30], [-370, -390], text=["Gram-" + gr for gr in gram_color.keys()],
       text_font_size="7pt", text_align="left", text_baseline="middle")

p.rect([-40, -40, -40], [18, 0, -18], width=30, height=13,
       color=list(drug_color.values()))
p.text([-15, -15, -15], [18, 0, -18], text=list(drug_color),
       text_font_size="9pt", text_align="left", text_baseline="middle")

output_file("burtin.html", title="burtin.py example")

show(p)

任何帮助,将不胜感激。



1> 小智..:

这是一个基于您上面链接的matplotlib示例的方法的类似示例。这使您非常接近所需的内容,您将需要修正所有格式以使其看起来更好,并添加轮廓线。

import numpy as np
from bokeh.plotting import figure, show, output_file
from bokeh.models import ColumnDataSource, LabelSet

num_vars = 9

centre = 0.5

theta = np.linspace(0, 2*np.pi, num_vars, endpoint=False)
# rotate theta such that the first axis is at the top
theta += np.pi/2

def unit_poly_verts(theta, centre ):
    """Return vertices of polygon for subplot axes.
    This polygon is circumscribed by a unit circle centered at (0.5, 0.5)
    """
    x0, y0, r = [centre ] * 3
    verts = [(r*np.cos(t) + x0, r*np.sin(t) + y0) for t in theta]
    return verts

def radar_patch(r, theta, centre ):
    """ Returns the x and y coordinates corresponding to the magnitudes of 
    each variable displayed in the radar plot
    """
    # offset from centre of circle
    offset = 0.01
    yt = (r*centre + offset) * np.sin(theta) + centre 
    xt = (r*centre + offset) * np.cos(theta) + centre 
    return xt, yt

verts = unit_poly_verts(theta, centre)
x = [v[0] for v in verts] 
y = [v[1] for v in verts] 

p = figure(title="Baseline - Radar plot")
text = ['Sulfate', 'Nitrate', 'EC', 'OC1', 'OC2', 'OC3', 'OP', 'CO', 'O3','']
source = ColumnDataSource({'x':x + [centre ],'y':y + [1],'text':text})

p.line(x="x", y="y", source=source)

labels = LabelSet(x="x",y="y",text="text",source=source)

p.add_layout(labels)

# example factor:
f1 = np.array([0.88, 0.01, 0.03, 0.03, 0.00, 0.06, 0.01, 0.00, 0.00])
f2 = np.array([0.07, 0.95, 0.04, 0.05, 0.00, 0.02, 0.01, 0.00, 0.00])
f3 = np.array([0.01, 0.02, 0.85, 0.19, 0.05, 0.10, 0.00, 0.00, 0.00])
f4 = np.array([0.02, 0.01, 0.07, 0.01, 0.21, 0.12, 0.98, 0.00, 0.00])
f5 = np.array([0.01, 0.01, 0.02, 0.71, 0.74, 0.70, 0.00, 0.00, 0.00])
#xt = np.array(x)
flist = [f1,f2,f3,f4,f5]
colors = ['blue','green','red', 'orange','purple']
for i in range(len(flist)):
    xt, yt = radar_patch(flist[i], theta, centre)
    p.patch(x=xt, y=yt, fill_alpha=0.15, fill_color=colors[i])
show(p)


推荐阅读
author-avatar
古零零碎碎
这个家伙很懒,什么也没留下!
PHP1.CN | 中国最专业的PHP中文社区 | DevBox开发工具箱 | json解析格式化 |PHP资讯 | PHP教程 | 数据库技术 | 服务器技术 | 前端开发技术 | PHP框架 | 开发工具 | 在线工具
Copyright © 1998 - 2020 PHP1.CN. All Rights Reserved | 京公网安备 11010802041100号 | 京ICP备19059560号-4 | PHP1.CN 第一PHP社区 版权所有