HashMap根据键的hashCode值存储数据,大多数情况下可以直接定位到它的值,因而具有很快的访问速度,但遍历顺序却是不确定的。 HashMap最多只允许一条记录的键为null,允许多条记录的值为null。HashMap非线程安全,即任一时刻可以有多个线程同时写HashMap,可能会导致数据的不一致。
在jdk8中,HashMap处理“碰撞”增加了红黑树这种数据结构,当碰撞结点较少时,采用链表存储,当较大时(>8个),采用红黑树(特点是查询时间是O(logn))存储(有一个阀值控制,大于阀值(8个),将链表存储转换成红黑树存储)
1. 位桶数组
transient Node[] table;
2.数组元素Node
//Node是单向链表,它实现了Map.Entry接口 static class Nodeimplements Map.Entry { final int hash;//用来定位数组索引位置 final K key; V value; Node next; // 下一个节点 //构造函数Hash值 键 值 下一个节点 Node(int hash, K key, V value, Node next) { this.hash = hash; this.key = key; this.value = value; this.next = next; } public final K getKey() { return key; } public final V getValue() { return value; } public final String toString() { return key + "=" + value; }
//每一个节点的hash值,是将key的hashCode 和 value的hashCode 亦或得到的。 public final int hashCode() { return Objects.hashCode(key) ^ Objects.hashCode(value); } public final V setValue(V newValue) { V oldValue = value; value = newValue; return oldValue; } //判断两个node是否相等,若key和value都相等,返回true。可以与自身比较为true public final boolean equals(Object o) { if (o == this) return true; if (o instanceof Map.Entry) { Map.Entry,?> e = (Map.Entry,?>)o; if (Objects.equals(key, e.getKey()) && Objects.equals(value, e.getValue())) return true; } return false; } }
3. 红黑树
static final class TreeNodeextends LinkedHashMap.Entry { TreeNode parent; // 父节点 TreeNode left; //左子树 TreeNode right; //右子树 TreeNode prev; // needed to unlink next upon deletion boolean red; //颜色属性 TreeNode(int hash, K key, V val, Node next) { super(hash, key, val, next); } /** * Returns root of tree containing this node. * 返回当前节点的根节点 */ final TreeNode root() { for (TreeNode r = this, p;;) { // 一层一层往上找 if ((p = r.parent) == null) return r; r = p; } }
1. 基本元素
//默认初始容量为16,这里这个数组的容量必须为2的n次幂。 static final int DEFAULT_INITIAL_CAPACITY = 1 <<4; //最大容量为2的30次方 static final int MAXIMUM_CAPACITY = 1 <<30; //默认加载因子 static final float DEFAULT_LOAD_FACTOR = 0.75f; //以Node为元素的数组,长度是2的N次方,或者初始化时为0. transient Node[] table; // 链表->红黑树阀值 static final int TREEIFY_THRESHOLD = 8; // 红黑树->链表阀值 static final int UNTREEIFY_THRESHOLD = 6; // 红黑树树化的最小表容量,最好>4*TREEIFY_THRESHOLD static final int MIN_TREEIFY_CAPACITY = 64; //已经储存的Node 的数量,包括数组中的和链表中的 transient int size; //扩容的临界值,或者所能容纳的key-value对的极限。当size>threshold的时候就会扩容 int threshold; //加载因子,用于计算哈希表元素数量的阈值。 threshold = 哈希桶.length * loadFactor; final float loadFactor;
2.构造函数
public HashMap(int initialCapacity, float loadFactor) { if (initialCapacity <0) throw new IllegalArgumentException("Illegal initial capacity: " + initialCapacity); if (initialCapacity > MAXIMUM_CAPACITY) initialCapacity = MAXIMUM_CAPACITY; if (loadFactor <= 0 || Float.isNaN(loadFactor)) throw new IllegalArgumentException("Illegal load factor: " + loadFactor); this.loadFactor = loadFactor; this.threshold = tableSizeFor(initialCapacity); //新的扩容临界值 } public HashMap(int initialCapacity) { this(initialCapacity, DEFAULT_LOAD_FACTOR); } public HashMap() { this.loadFactor = DEFAULT_LOAD_FACTOR; // all other fields defaulted }
//根据期望容量cap,返回2的n次方形式的 哈希桶的实际容量 length。 返回值一般会>=cap
static final int tableSizeFor(int cap) {
//经过下面的 或 和位移 运算, n最终各位都是1。 int n = cap - 1;
n |= n >>> 1;
n |= n >>> 2;
n |= n >>> 4;
n |= n >>> 8;
n |= n >>> 16;
//判断n是否越界,返回 2的n次方作为 table(哈希桶)的阈值 return (n <0) ? 1 : (n >= 1 <<30) ? 1 <<30 : n + 1;
}
这个方法就是算>=cap,且是2的倍数的最小值,例如
不管增加、删除、查找键值对,定位到哈希桶数组的位置都是很关键的第一步。前面说过HashMap的数据结构是数组和链表的结合,所以我们当然希望这个HashMap里面的元素位置尽量分布均匀些,尽量使得每个位置上的元素数量只有一个,那么当我们用hash算法求得这个位置的时候,马上就可以知道对应位置的元素就是我们要的,不用遍历链表,大大优化了查询的效率。HashMap定位数组索引位置,直接决定了hash方法的离散性能。
// 第一步 static final int hash(Object key) { int h; return (key == null) ? 0 : (h = key.hashCode()) ^ (h >>> 16); } //第二步 (n - 1) & hash
这里的Hash算法本质上就是三步:取key的hashCode值、高位运算、取模运算。
通过hashCode()的高16位异或低16位实现的:(h = k.hashCode()) ^ (h >>> 16),主要是从速度、功效、质量来考虑的,这么做可以在数组table的length比较小的时候,也能保证考虑到高低Bit都参与到Hash的计算中,同时不会有太大的开销。
通过(n - 1) & hash来得到该对象的保存位,而HashMap底层数组的长度总是2的n次方,这是HashMap在速度上的优化。当length总是2的n次方时,(n - 1) & hash运算等价于对n取模,也就是h%n,但是&比%具有更高的效率。
①.判断键值对数组table[i]是否为空或为null,否则执行resize()进行扩容;
②.根据键值key计算hash值得到插入的数组索引i,如果table[i]==null,直接新建节点添加,转向⑥,如果table[i]不为空,转向③;
③.判断table[i]的首个元素是否和key一样,如果相同直接覆盖value,否则转向④,这里的相同指的是hashCode以及equals;
④.判断table[i] 是否为treeNode,即table[i] 是否是红黑树,如果是红黑树,则直接在树中插入键值对,否则转向⑤;
⑤.遍历table[i],判断链表长度是否大于8,大于8的话把链表转换为红黑树,在红黑树中执行插入操作,否则进行链表的插入操作;遍历过程中若发现key已经存在直接覆盖value即可;
⑥.插入成功后,判断实际存在的键值对数量size是否超多了最大容量threshold,如果超过,进行扩容。
1 public V put(K key, V value) {
2 // 对key的hashCode()做hash
3 return putVal(hash(key), key, value, false, true);
4 }
5
6 final V putVal(int hash, K key, V value, boolean onlyIfAbsent,
7 boolean evict) {
8 Node[] tab; Node p; int n, i;
9 // 步骤①:tab为空则创建
10 if ((tab = table) == null || (n = tab.length) == 0)
11 n = (tab = resize()).length;
12 // 步骤②:计算index,并对null做处理
13 if ((p = tab[i = (n - 1) & hash]) == null)
14 tab[i] = newNode(hash, key, value, null);
15 else {
16 Node e; K k;
17 // 步骤③:节点key存在,直接覆盖value
18 if (p.hash == hash &&
19 ((k = p.key) == key || (key != null && key.equals(k))))
20 e = p;
21 // 步骤④:判断该链为红黑树
22 else if (p instanceof TreeNode)
23 e = ((TreeNode)p).putTreeVal(this, tab, hash, key, value);
24 // 步骤⑤:该链为链表
25 else {
26 for (int binCount = 0; ; ++binCount) {
27 if ((e = p.next) == null) {
28 p.next = newNode(hash, key,value,null);
//链表长度大于8转换为红黑树进行处理
29 if (binCount >= TREEIFY_THRESHOLD - 1) // -1 for 1st
30 treeifyBin(tab, hash);
31 break;
32 }
// key已经存在直接覆盖value
33 if (e.hash == hash &&
34 ((k = e.key) == key || (key != null && key.equals(k))))
break;
36 p = e;
37 }
38 }
39 //如果e不是null,说明有需要覆盖的节点,
40 if (e != null) { // existing mapping for key
41 V oldValue = e.value;
42 if (!onlyIfAbsent || oldValue == null)
43 e.value = value;
44 afterNodeAccess(e);
45 return oldValue;
46 }
47 }
48 ++modCount;
49 // 步骤⑥:超过最大容量 就扩容
50 if (++size > threshold)
51 resize();
52 afterNodeInsertion(evict);
53 return null;
54 }
扩容(resize)就是重新计算容量,向HashMap对象里不停的添加元素,而HashMap对象内部的数组无法装载更多的元素时,对象就需要扩大数组的长度,以便能装入更多的元素。当然Java里的数组是无法自动扩容的,方法是使用一个新的数组代替已有的容量小的数组,就像我们用一个小桶装水,如果想装更多的水,就得换大水桶。通过扩容也可以有效的解决碰撞问题。
final Node[] resize() { //oldTab 为当前表的哈希桶 Node [] oldTab = table; //当前哈希桶的容量 length int oldCap = (oldTab == null) ? 0 : oldTab.length; //当前的阈值 int oldThr = threshold; //初始化新的容量和阈值为0 int newCap, newThr = 0; //如果当前容量大于0 if (oldCap > 0) { //如果当前容量已经到达上限 if (oldCap >= MAXIMUM_CAPACITY) { //则设置阈值是2的31次方-1 threshold = Integer.MAX_VALUE; //同时返回当前的哈希桶,不再扩容 return oldTab; }//否则新的容量为旧的容量的两倍。 else if ((newCap = oldCap <<1) oldCap >= DEFAULT_INITIAL_CAPACITY)//如果旧的容量大于等于默认初始容量16 //那么新的阈值也等于旧的阈值的两倍 newThr = oldThr <<1; // double threshold }//如果当前表是空的,但是有阈值。代表是初始化时指定了容量、阈值的情况 else if (oldThr > 0) // initial capacity was placed in threshold newCap = oldThr;//那么新表的容量就等于旧的阈值 else {}//如果当前表是空的,而且也没有阈值。代表是初始化时没有任何容量/阈值参数的情况 // zero initial threshold signifies using defaults newCap = DEFAULT_INITIAL_CAPACITY;//此时新表的容量为默认的容量 16 newThr = (int)(DEFAULT_LOAD_FACTOR * DEFAULT_INITIAL_CAPACITY);//新的阈值为默认容量16 * 默认加载因子0.75f = 12 } if (newThr == 0) {//如果新的阈值是0,对应的是 当前表是空的,但是有阈值的情况 float ft = (float)newCap * loadFactor;//根据新表容量 和 加载因子 求出新的阈值 //进行越界修复 newThr = (newCap float)MAXIMUM_CAPACITY ? (int)ft : Integer.MAX_VALUE); } //更新阈值 threshold = newThr; @SuppressWarnings({"rawtypes","unchecked"}) //根据新的容量 构建新的哈希桶 Node [] newTab = (Node [])new Node[newCap]; //更新哈希桶引用 table = newTab; //如果以前的哈希桶中有元素 //下面开始将当前哈希桶中的所有节点转移到新的哈希桶中 if (oldTab != null) { //遍历老的哈希桶 for (int j = 0; j j) { //取出当前的节点 e Node e; //如果当前桶中有元素,则将链表赋值给e if ((e = oldTab[j]) != null) { //将原哈希桶置空以便GC oldTab[j] = null; //如果当前链表中就一个元素,(没有发生哈希碰撞) if (e.next == null) //直接将这个元素放置在新的哈希桶里。 //注意这里取下标 是用 哈希值 与 桶的长度-1 。 由于桶的长度是2的n次方,这么做其实是等于 一个模运算。但是效率更高 newTab[e.hash & (newCap - 1)] = e; //如果发生过哈希碰撞 ,而且是节点数超过8个,转化成了红黑树(暂且不谈 避免过于复杂, 后续专门研究一下红黑树) else if (e instanceof TreeNode) ((TreeNode )e).split(this, newTab, j, oldCap); //如果发生过哈希碰撞,节点数小于8个。则要根据链表上每个节点的哈希值,依次放入新哈希桶对应下标位置。 else { // preserve order //因为扩容是容量翻倍,所以原链表上的每个节点,现在可能存放在原来的下标,即low位, 或者扩容后的下标,即high位。 high位= low位+原哈希桶容量 //低位链表的头结点、尾节点 Node loHead = null, loTail = null; //高位链表的头节点、尾节点 Node hiHead = null, hiTail = null; Node next;//临时节点 存放e的下一个节点 do { next = e.next; //这里又是一个利用位运算 代替常规运算的高效点: 利用哈希值 与 旧的容量,可以得到哈希值去模后,是大于等于oldCap还是小于oldCap,等于0代表小于oldCap,应该存放在低位,否则存放在高位 if ((e.hash & oldCap) == 0) { //给头尾节点指针赋值 if (loTail == null) loHead = e; else loTail.next = e; loTail = e; }//高位也是相同的逻辑 else { if (hiTail == null) hiHead = e; else hiTail.next = e; hiTail = e; }//循环直到链表结束 } while ((e = next) != null); //将低位链表存放在原index处, if (loTail != null) { loTail.next = null; newTab[j] = loHead; } //将高位链表存放在新index处 if (hiTail != null) { hiTail.next = null; newTab[j + oldCap] = hiHead; } } } } } return newTab; }
public V get(Object key) { Nodee; return (e = getNode(hash(key), key)) == null ? null : e.value; } final Node getNode(int hash, Object key) { Node [] tab; Node first, e; int n; K k; // 找到hash对应的位置,也就是数组中的位置 if ((tab = table) != null && (n = tab.length) > 0 && (first = tab[(n - 1) & hash]) != null) { // 检查第一个Node是不是要找的Node if (first.hash == hash && // always check first node ((k = first.key) == key || (key != null && key.equals(k)))) return first; // 检查first后面的node if ((e = first.next) != null) { if (first instanceof TreeNode) // 查询红黑树 return ((TreeNode )first).getTreeNode(hash, key); do { // 遍历后面的链表,找到key值和hash值都相同的Node if (e.hash == hash && ((k = e.key) == key || (key != null && key.equals(k)))) return e; } while ((e = e.next) != null); } } return null; }