热门标签 | HotTags
当前位置:  开发笔记 > 编程语言 > 正文

熊猫read_csv加快

如何解决《熊猫read_csv加快》经验,为你挑选了1个好方法。

我正在读取一个大型csv,其中包含约1000万行和20个不同的列(带有标头名称)。

我有值,2列与日期和一些字符串。

目前,我需要大约1.5分钟的时间来加载数据,如下所示:

df = pd.read_csv('data.csv', index_col='date', parse_dates = 'date')

我想问一下,如何在读取数据后立即将其数据框设置得更快呢?

我尝试使用HDF5数据库,但是速度很慢。

我尝试读取的数据子集(我选择了8列,并从实际的20列和几百万行中给出了3行):

Date    Comp     Rating Price   Estprice    Dividend?   Date_earnings   Returns
3/12/2017   Apple   Buy   100   114              Yes    4/4/2017    0.005646835
3/12/2017   Blackberry  Sell    120 97            No    4/25/2017   0.000775331
3/12/2017   Microsoft   Hold    140 100          Yes    5/28/2017   0.003028423

谢谢你的建议。



1> MaxU..:

让我们测试一下!

数据生成:

sz = 10**3

df = pd.DataFrame(np.random.randint(0, 10**6, (sz, 2)), columns=['i1','i2'])
df['date'] = pd.date_range('2000-01-01', freq='1S', periods=len(df))
df['dt2'] = pd.date_range('1980-01-01', freq='999S', periods=len(df))
df['f1'] = np.random.rand(len(df))
df['f2'] = np.random.rand(len(df))
# generate 10 string columns 
for i in range(1, 11):
    df['s{}'.format(i)] =  pd.util.testing.rands_array(10, len(df))

df = pd.concat([df] * 10**3, ignore_index=True).sample(frac=1)
df = df.set_index(df.pop('date').sort_values())

我们生成了以下DF

In [59]: df
Out[59]:
                         i1      i2                 dt2        f1     ...              s7          s8          s9         s10
date                                                                  ...
2000-01-01 00:00:00  216625    4179 1980-01-04 04:35:24  0.679989     ...      7G8rLnoocA  E7Ot7oPsJ6  puQamLn0I2  zxHrATQn0m
2000-01-01 00:00:00  374740  967991 1980-01-09 11:07:48  0.202064     ...      wLETO2g8uL  MhtzNLPXCH  PW1uKxY0df  wTakdCe6nK
2000-01-01 00:00:00  152181  627451 1980-01-10 11:49:39  0.956117     ...      mXOsfUPqOy  6IIst7UFDT  nL6XZxrT3r  BxPCFNdZTK
2000-01-01 00:00:00  915732  730737 1980-01-06 10:25:30  0.854145     ...      Crh94m085p  M1tbrorxGT  XWSKk3b8Pv  M9FWQtPzaa
2000-01-01 00:00:00  590262  248378 1980-01-06 11:48:45  0.307373     ...      wRnMPxeopd  JF24uTUwJC  2CRrs9yB2N  hxYrXFnT1H
2000-01-01 00:00:00  161183  620876 1980-01-08 21:48:36  0.207536     ...      cyN0AExPO2  POaldI6Y0l  TDc13rPdT0  xgoDOW8Y1L
2000-01-01 00:00:00  589696  784856 1980-01-12 02:07:21  0.909340     ...      GIRAAVBRpj  xwcnpwFohz  wqcoTMjQ4S  GTcIWXElo7
...                     ...     ...                 ...       ...     ...             ...         ...         ...         ...
2000-01-01 00:16:39  773606  205714 1980-01-12 07:40:21  0.895944     ...      HEkXfD7pku  1ogy12wBom  OT3KmQRFGz  Dp1cK5R4Gq
2000-01-01 00:16:39  915732  730737 1980-01-06 10:25:30  0.854145     ...      Crh94m085p  M1tbrorxGT  XWSKk3b8Pv  M9FWQtPzaa
2000-01-01 00:16:39  990722  567886 1980-01-03 05:50:06  0.676511     ...      gVO3g0I97R  yCqOhTVeEi  imCCeQa0WG  9tslOJGWDJ
2000-01-01 00:16:39  531778  438944 1980-01-04 20:07:48  0.190714     ...      rbLmkbnO5G  ATm3BpWLC0  moLkyY2Msc  7A2UJERrBG
2000-01-01 00:16:39  880791  245911 1980-01-02 15:57:36  0.014967     ...      bZuKNBvrEF  K84u9HyAmG  4yy2bsUVNn  WZQ5Vvl9zD
2000-01-01 00:16:39  239866  425516 1980-01-10 05:26:42  0.667183     ...      6xukg6TVah  VEUz4d92B8  zHDxty6U3d  ItztnI5LmJ
2000-01-01 00:16:39  338368  804695 1980-01-12 05:27:09  0.084818     ...      NM4fdjKBuW  LXGUbLIuw9  SHdpnttX6q  4oXKMsaOJ5

[1000000 rows x 15 columns]

In [60]: df.shape
Out[60]: (1000000, 15)

In [61]: df.info()

DatetimeIndex: 1000000 entries, 2000-01-01 00:00:00 to 2000-01-01 00:16:39
Data columns (total 15 columns):
i1     1000000 non-null int32
i2     1000000 non-null int32
dt2    1000000 non-null datetime64[ns]
f1     1000000 non-null float64
f2     1000000 non-null float64
s1     1000000 non-null object
s2     1000000 non-null object
s3     1000000 non-null object
s4     1000000 non-null object
s5     1000000 non-null object
s6     1000000 non-null object
s7     1000000 non-null object
s8     1000000 non-null object
s9     1000000 non-null object
s10    1000000 non-null object
dtypes: datetime64[ns](1), float64(2), int32(2), object(10)
memory usage: 114.4+ MB

#print(df.shape)
#print(df.info())

让我们以不同的格式将其写入磁盘:(CSV,固定的HDF5,HDF5表,羽毛):

# CSV
df.to_csv('c:/tmp/test.csv')
# HDF5 table format
df.to_hdf('c:/tmp/test.h5', 'test', format='t')
#  HDF5 fixed format
df.to_hdf('c:/tmp/test_fix.h5', 'test')
# Feather format
import feather
feather.write_dataframe(df, 'c:/tmp/test.feather')

定时:

现在我们可以测量磁盘读取:

In [54]: # CSV
    ...: %timeit pd.read_csv('c:/tmp/test.csv', parse_dates=['date', 'dt2'], index_col=0)
1 loop, best of 3: 12.3 s per loop   # 3rd place

In [55]: # HDF5 fixed format
    ...: %timeit pd.read_hdf('c:/tmp/test_fix.h5', 'test')
1 loop, best of 3: 1.85 s per loop   # 1st place

In [56]: # HDF5 table format
    ...: %timeit pd.read_hdf('c:/tmp/test.h5', 'test')
1 loop, best of 3: 24.2 s per loop   # 4th place

In [57]: # Feather
    ...: %timeit feather.read_dataframe('c:/tmp/test.feather')
1 loop, best of 3: 3.21 s per loop   # 2nd place

如果您并不总是需要读取所有数据,那么将数据以HDF5表格式存储(并使用data_columns参数以索引这些列,将用于过滤)是很有意义的。


推荐阅读
  • 技术分享:从动态网站提取站点密钥的解决方案
    本文探讨了如何从动态网站中提取站点密钥,特别是针对验证码(reCAPTCHA)的处理方法。通过结合Selenium和requests库,提供了详细的代码示例和优化建议。 ... [详细]
  • 数据管理权威指南:《DAMA-DMBOK2 数据管理知识体系》
    本书提供了全面的数据管理职能、术语和最佳实践方法的标准行业解释,构建了数据管理的总体框架,为数据管理的发展奠定了坚实的理论基础。适合各类数据管理专业人士和相关领域的从业人员。 ... [详细]
  • DNN Community 和 Professional 版本的主要差异
    本文详细解析了 DotNetNuke (DNN) 的两种主要版本:Community 和 Professional。通过对比两者的功能和附加组件,帮助用户选择最适合其需求的版本。 ... [详细]
  • 图数据库中的知识表示与推理机制
    本文探讨了图数据库及其技术生态系统在知识表示和推理问题上的应用。通过理解图数据结构,尤其是属性图的特性,可以为复杂的数据关系提供高效且优雅的解决方案。我们将详细介绍属性图的基本概念、对象建模、概念建模以及自动推理的过程,并结合实际代码示例进行说明。 ... [详细]
  • 本文详细探讨了JDBC(Java数据库连接)的内部机制,重点分析其作为服务提供者接口(SPI)框架的应用。通过类图和代码示例,展示了JDBC如何注册驱动程序、建立数据库连接以及执行SQL查询的过程。 ... [详细]
  • 本文探讨了MariaDB在当前数据库市场中的地位和挑战,分析其可能面临的困境,并提出了对未来发展的几点看法。 ... [详细]
  • 探讨如何从数据库中按分组获取最大N条记录的方法,并分享新年祝福。本文提供多种解决方案,适用于不同数据库系统,如MySQL、Oracle等。 ... [详细]
  • 20100423:Fixes:更新批处理,以兼容WIN7。第一次系统地玩QT,于是诞生了此预备式:【QT版本4.6.0&#x ... [详细]
  • 本文详细介绍了 MySQL 数据库中的基础操作,包括创建、查询、修改和删除数据库、表及数据的命令。通过具体的 SQL 语句示例,帮助读者快速掌握 MySQL 的基本操作。 ... [详细]
  • 优化ListView性能
    本文深入探讨了如何通过多种技术手段优化ListView的性能,包括视图复用、ViewHolder模式、分批加载数据、图片优化及内存管理等。这些方法能够显著提升应用的响应速度和用户体验。 ... [详细]
  • 本文深入探讨 MyBatis 中动态 SQL 的使用方法,包括 if/where、trim 自定义字符串截取规则、choose 分支选择、封装查询和修改条件的 where/set 标签、批量处理的 foreach 标签以及内置参数和 bind 的用法。 ... [详细]
  • 本文详细介绍了如何通过多种编程语言(如PHP、JSP)实现网站与MySQL数据库的连接,包括创建数据库、表的基本操作,以及数据的读取和写入方法。 ... [详细]
  • 本章将深入探讨移动 UI 设计的核心原则,帮助开发者构建简洁、高效且用户友好的界面。通过学习设计规则和用户体验优化技巧,您将能够创建出既美观又实用的移动应用。 ... [详细]
  • 通过Web界面管理Linux日志的解决方案
    本指南介绍了一种利用rsyslog、MariaDB和LogAnalyzer搭建集中式日志管理平台的方法,使用户可以通过Web界面查看和分析Linux系统的日志记录。此方案不仅适用于服务器环境,还提供了详细的步骤来确保系统的稳定性和安全性。 ... [详细]
  • 本文详细介绍如何利用已搭建的LAMP(Linux、Apache、MySQL、PHP)环境,快速创建一个基于WordPress的内容管理系统(CMS)。WordPress是一款流行的开源博客平台,适用于个人或小型团队使用。 ... [详细]
author-avatar
默默-晶f
这个家伙很懒,什么也没留下!
PHP1.CN | 中国最专业的PHP中文社区 | DevBox开发工具箱 | json解析格式化 |PHP资讯 | PHP教程 | 数据库技术 | 服务器技术 | 前端开发技术 | PHP框架 | 开发工具 | 在线工具
Copyright © 1998 - 2020 PHP1.CN. All Rights Reserved | 京公网安备 11010802041100号 | 京ICP备19059560号-4 | PHP1.CN 第一PHP社区 版权所有