热门标签 | HotTags
当前位置:  开发笔记 > 编程语言 > 正文

吴裕雄python数据处理(1)

importtimeprint(time.time())print(time.localtime())print(time.strftime('%Y-%m-%d%X'

import time

print(time.time())
print(time.localtime())
print(time.strftime(‘%Y-%m-%d %X‘,time.localtime()))

技术分享图片

绘图显示中文配置

技术分享图片

技术分享图片

import matplotlib.pyplot as plt

a = [1,1,2,3]
b = [2,2,2,2]
plt.plot(a,b)
plt.title("天生自然")
plt.show()

技术分享图片

import pandas as pd

df = pd.read_csv("F:\\python3_pachongAndDatareduce\\data\\pandas data\\taobao_data.csv")
print(df.head())

技术分享图片

import pandas as pd

df = pd.read_csv("F:\\python3_pachongAndDatareduce\\data\\pandas data\\taobao_data.csv",delimiter=",",encoding="utf8",header=0)
print(df.head())

技术分享图片

import pandas as pd

df = pd.read_csv("F:\\python3_pachongAndDatareduce\\data\\pandas data\\taobao_data.csv",delimiter=",",encoding="utf8",header=0)
df.to_csv("E:\\temp\\taobao_price_data.csv", columns=["宝贝","价格"],index=False,header=True)

import pandas as pd

df = pd.read_csv("F:\\python3_pachongAndDatareduce\\data\\pandas data\\taobao_data.csv",delimiter=",",encoding="utf8",header=0)
print(df[0:3])

技术分享图片

import pandas as pd

df = pd.read_csv("F:\\python3_pachongAndDatareduce\\data\\pandas data\\taobao_data.csv",delimiter=",",encoding="utf8",header=0)
cols = df[["宝贝","价格"]]
print(cols.head())

技术分享图片

import pandas as pd

df = pd.read_csv("F:\\python3_pachongAndDatareduce\\data\\pandas data\\taobao_data.csv",delimiter=",",encoding="utf8",header=0)
a = df.ix[0:3,["宝贝","价格"]]
print(a)

技术分享图片

import pandas as pd

df = pd.read_csv("F:\\python3_pachongAndDatareduce\\data\\pandas data\\taobao_data.csv",delimiter=",",encoding="utf8",header=0)
df["销售量"] = df["价格"]*df["成交量"]
print(df.head())

技术分享图片

import pandas as pd

df = pd.read_csv("F:\\python3_pachongAndDatareduce\\data\\pandas data\\taobao_data.csv",delimiter=",",encoding="utf8",header=0)
a = df[(df["价格"]<100)&(df["成交量"]<10000)]
print(a)

技术分享图片

import pandas as pd

df = pd.read_csv("F:\\python3_pachongAndDatareduce\\data\\pandas data\\taobao_data.csv",delimiter=",",encoding="utf8",header=0)
print(df.head())
df1 = df.set_index("位置")
print(df1.head())
df2 = df1.sort_index()
print(df2.head())

技术分享图片

import pandas as pd

df = pd.read_csv("F:\\python3_pachongAndDatareduce\\data\\pandas data\\taobao_data.csv",delimiter=",",encoding="utf8",header=0)
df1 = df.set_index(["位置","卖家"])
print(df1.head())

技术分享图片

import pandas as pd

df = pd.read_csv("F:\\python3_pachongAndDatareduce\\data\\pandas data\\taobao_data.csv",delimiter=",",encoding="utf8",header=0)
df1 = df.set_index(["位置","卖家"]).sortlevel(0)
print(df1.head())

技术分享图片

import pandas as pd

df = pd.read_csv("F:\\python3_pachongAndDatareduce\\data\\pandas data\\taobao_data.csv",delimiter=",",encoding="utf8",header=0)
a = df.drop(["宝贝","卖家"],axis=1)
print(a.head())

b = df.drop(["宝贝","卖家"],axis=1).groupby("位置")
print(b.head())

技术分享图片

import pandas as pd

df = pd.read_csv("F:\\python3_pachongAndDatareduce\\data\\pandas data\\taobao_data.csv",delimiter=",",encoding="utf8",header=0)
a = df.drop(["宝贝","卖家"],axis=1).groupby("位置").mean()
print(a.head())

技术分享图片

import pandas as pd

df = pd.read_csv("F:\\python3_pachongAndDatareduce\\data\\pandas data\\taobao_data.csv",delimiter=",",encoding="utf8",header=0)
a = df.drop(["宝贝","卖家"],axis=1).groupby("位置").mean().sort_values("成交量",ascending=False)
print(a.head())

 技术分享图片

import pandas as pd

df = pd.read_csv("F:\\python3_pachongAndDatareduce\\data\\pandas data\\taobao_data.csv",delimiter=",",encoding="utf8",header=0)
a = df.drop(["宝贝","卖家"],axis=1).groupby("位置").sum().sort_values("成交量",ascending=False)
print(a.head())

技术分享图片

import pandas as pd

df = pd.read_csv("F:\\python3_pachongAndDatareduce\\data\\pandas data\\taobao_data.csv",delimiter=",",encoding="utf8",header=0)
print(df.info())

技术分享图片

import pandas as pd

df = pd.read_csv("F:\\python3_pachongAndDatareduce\\data\\pandas data\\taobao_data.csv",delimiter=",",encoding="utf8",header=0)
print(df.describe())

技术分享图片

import pandas as pd

df = pd.read_csv("F:\\python3_pachongAndDatareduce\\data\\pandas data\\taobao_data.csv",delimiter=",",encoding="utf8",header=0)
print(df.describe(include=["object"]))

技术分享图片

import pandas as pd

df = pd.read_csv("F:\\python3_pachongAndDatareduce\\data\\pandas data\\taobao_data.csv",delimiter=",",encoding="utf8",header=0)
a = df["成交量"].groupby(df["位置"])
print(a.head())

技术分享图片

import pandas as pd

df = pd.read_csv("F:\\python3_pachongAndDatareduce\\data\\pandas data\\taobao_data.csv",delimiter=",",encoding="utf8",header=0)
a = df["成交量"].groupby(df["位置"]).mean()
print(a.head())

技术分享图片

import pandas as pd

df = pd.read_csv("F:\\python3_pachongAndDatareduce\\data\\pandas data\\taobao_data.csv",delimiter=",",encoding="utf8",header=0)
a = df["成交量"].groupby([df["位置"],df["卖家"]]).mean()
print(a.head())

技术分享图片

import pandas as pd

df = pd.read_csv("F:\\python3_pachongAndDatareduce\\data\\pandas data\\taobao_data.csv",delimiter=",",encoding="utf8",header=0)
a = df.groupby("位置").mean()
print(a.head())

技术分享图片

import pandas as pd

df = pd.read_csv("F:\\python3_pachongAndDatareduce\\data\\pandas data\\taobao_data.csv",delimiter=",",encoding="utf8",header=0)
a = df.groupby(["位置","卖家"]).mean()
print(a.head())

技术分享图片

import pandas as pd

df = pd.read_csv("F:\\python3_pachongAndDatareduce\\data\\pandas data\\taobao_data.csv",delimiter=",",encoding="utf8",header=0)
a = df.groupby(["位置","卖家"]).size()
print(a.head())

技术分享图片

import pandas as pd

df = pd.read_csv("F:\\python3_pachongAndDatareduce\\data\\pandas data\\taobao_data.csv",delimiter=",",encoding="utf8",header=0)
a = df[30:35][["位置","卖家"]]
print(a)

b = df[90:95][["卖家","成交量"]]
print(b)

技术分享图片

import pandas as pd

df = pd.read_csv("F:\\python3_pachongAndDatareduce\\data\\pandas data\\taobao_data.csv",delimiter=",",encoding="utf8",header=0)
a = df[30:35][["位置","卖家"]]
b = df[30:35][["卖家","成交量"]]
c = pd.merge(a,b)
print(c)

技术分享图片

import pandas as pd

df = pd.read_csv("F:\\python3_pachongAndDatareduce\\data\\pandas data\\taobao_data.csv",delimiter=",",encoding="utf8",header=0)
a = df[30:35][["位置","卖家"]]
b = df[30:35][["卖家","成交量"]]
c = pd.merge(a,b,on="卖家")
print(c)

技术分享图片

import pandas as pd

df = pd.read_csv("F:\\python3_pachongAndDatareduce\\data\\pandas data\\taobao_data.csv",delimiter=",",encoding="utf8",header=0)
a = df[10:20][["位置","卖家"]]
b = df[30:40][["卖家","成交量"]]
c = pd.merge(a,b,how="outer")
print(c)

技术分享图片

import pandas as pd

df = pd.read_csv("F:\\python3_pachongAndDatareduce\\data\\pandas data\\taobao_data.csv",delimiter=",",encoding="utf8",header=0)
a = df[10:20][["位置","卖家"]]
b = df[30:40][["卖家","成交量"]]
c = pd.merge(a,b,how="left")
print(c)

技术分享图片

import pandas as pd

df = pd.read_csv("F:\\python3_pachongAndDatareduce\\data\\pandas data\\taobao_data.csv",delimiter=",",encoding="utf8",header=0)
a = df[10:20][["位置","卖家"]]
b = df[30:40][["卖家","成交量"]]
c = pd.merge(a,b,how="right")
print(c)

技术分享图片

import pandas as pd

df = pd.read_csv("F:\\python3_pachongAndDatareduce\\data\\pandas data\\taobao_data.csv",delimiter=",",encoding="utf8",header=0)
a = df[:10][["位置","卖家"]]
print(a)
b = df[:10][["卖家","成交量"]]
print(b)
c = pd.merge(a,b,how="right")
print(c)

技术分享图片

import pandas as pd

df = pd.read_csv("F:\\python3_pachongAndDatareduce\\data\\pandas data\\taobao_data.csv",delimiter=",",encoding="utf8",header=0)
a = df[:10][["位置","卖家"]]
b = df[:10][["卖家","成交量"]]
c = pd.merge(a,b,left_index=True,right_index=True)
print(c)

技术分享图片

import pandas as pd

df = pd.read_csv("F:\\python3_pachongAndDatareduce\\data\\pandas data\\taobao_data.csv",delimiter=",",encoding="utf8",header=0)
a = df[:10][["位置","卖家"]]
b = df[:10][["价格","成交量"]]
c = pd.merge(a,b,left_index=True,right_index=True)
print(c)

技术分享图片

import pandas as pd

df = pd.read_csv("F:\\python3_pachongAndDatareduce\\data\\pandas data\\taobao_data.csv",delimiter=",",encoding="utf8",header=0)
a = df[:10][["位置","卖家"]]
b = df[:10][["价格","成交量"]]
c = a.join(b)
print(c)

技术分享图片

import pandas as pd

df = pd.read_csv("F:\\python3_pachongAndDatareduce\\data\\pandas data\\taobao_data.csv",delimiter=",",encoding="utf8",header=0)
a = df[:5]["宝贝"]
b = df[5:10]["宝贝"]
c = df[10:15]["宝贝"]
d = pd.concat([a,b,c])
print(d)

技术分享图片

import pandas as pd

df = pd.read_csv("F:\\python3_pachongAndDatareduce\\data\\pandas data\\taobao_data.csv",delimiter=",",encoding="utf8",header=0)
a = df[:5]["宝贝"]
print(a)
b = df[:5]["价格"]
print(b)
c = df[:5]["成交量"]
print(c)
d = pd.concat([a,b,c],axis=1)
print(d)

技术分享图片

import pandas as pd

df = pd.read_csv("F:\\python3_pachongAndDatareduce\\data\\pandas data\\taobao_data.csv",delimiter=",",encoding="utf8",header=0)
a = df[:5][["位置","卖家"]]
print(a)
b = df[:5][["价格","成交量"]]
print(b)
c = pd.concat([a,b])
print(c)

技术分享图片

import pandas as pd

df = pd.read_csv("F:\\python3_pachongAndDatareduce\\data\\pandas data\\taobao_data.csv",delimiter=",",encoding="utf8",header=0)
a = df[:5][["位置","卖家"]]
print(a)
b = df[:5][["价格","成交量"]]
print(b)
c = pd.concat([a,b],axis=1)
print(c)

技术分享图片

吴裕雄 python 数据处理(1)


推荐阅读
  • 二维码的实现与应用
    本文介绍了二维码的基本概念、分类及其优缺点,并详细描述了如何使用Java编程语言结合第三方库(如ZXing和qrcode.jar)来实现二维码的生成与解析。 ... [详细]
  • 如何高效渲染JSON数据
    本文介绍了在控制器中返回JSON结果的方法,并详细说明了如何利用jQuery处理和展示这些数据,为Web开发提供了实用的技巧。 ... [详细]
  • Awk是一款功能强大的文本分析与处理工具,尤其在数据解析和报告生成方面表现突出。它通过读取由换行符分隔的记录,并按照指定的字段分隔符来划分和处理这些记录,从而实现复杂的数据操作。 ... [详细]
  • 深入解析Unity3D游戏开发中的音频播放技术
    在游戏开发中,音频播放是提升玩家沉浸感的关键因素之一。本文将探讨如何在Unity3D中高效地管理和播放不同类型的游戏音频,包括背景音乐和效果音效,并介绍实现这些功能的具体步骤。 ... [详细]
  • 本文探讨了一种常见的C++面试题目——实现自己的String类。通过此过程,不仅能够检验开发者对C++基础知识的掌握程度,还能加深对其高级特性的理解。文章详细介绍了如何实现基本的功能,如构造函数、析构函数、拷贝构造函数及赋值运算符重载等。 ... [详细]
  • 随着Linux操作系统的广泛使用,确保用户账户及系统安全变得尤为重要。用户密码的复杂性直接关系到系统的整体安全性。本文将详细介绍如何在CentOS服务器上自定义密码规则,以增强系统的安全性。 ... [详细]
  • 3DSMAX制作超现实的体育馆模型
    这篇教程是向脚本之家的朋友介绍3DSMAX制作超现实的体育馆模型方法,教程制作出来的体育馆模型非常地不错,不过教程有点难度,需要有一定基础的朋友学习,推荐到脚本之家,喜欢的朋友可 ... [详细]
  • 本文介绍了如何在AngularJS应用中使用ng-repeat指令创建可单独点击选中的列表项,并详细描述了实现这一功能的具体步骤和代码示例。 ... [详细]
  • 在项目冲刺的最后一天,团队专注于软件用户界面的细节优化,包括调整控件布局和字体设置,以确保界面的简洁性和用户友好性。 ... [详细]
  • 网络流24题——试题库问题
    题目描述:假设一个试题库中有n道试题。每道试题都标明了所属类别。同一道题可能有多个类别属性。现要从题库中抽取m道题组成试卷。并要求试卷包含指定类型的试题。试设计一个满足要求的组卷算 ... [详细]
  • 利用无代码平台实现高效业务应用开发
    随着市场环境的变化加速,全球企业都在探索更为敏捷的应用开发模式,以便快速响应新兴的商业机遇。然而,传统的软件开发方式不仅成本高昂,而且耗时较长,这往往导致IT与业务部门之间的合作障碍,进而影响项目的成功。本文将探讨如何通过无代码开发平台解决这些问题。 ... [详细]
  • 在1995年,Simon Plouffe 发现了一种特殊的求和方法来表示某些常数。两年后,Bailey 和 Borwein 在他们的论文中发表了这一发现,这种方法被命名为 Bailey-Borwein-Plouffe (BBP) 公式。该问题要求计算圆周率 π 的第 n 个十六进制数字。 ... [详细]
  • 本文介绍了SIP(Session Initiation Protocol,会话发起协议)的基本概念、功能、消息格式及其实现机制。SIP是一种在IP网络上用于建立、管理和终止多媒体通信会话的应用层协议。 ... [详细]
  • 在日常生活中,支付宝已成为不可或缺的支付工具之一。本文将详细介绍如何通过支付宝实现免费提现,帮助用户更好地管理个人财务,避免不必要的手续费支出。 ... [详细]
  • 我的读书清单(持续更新)201705311.《一千零一夜》2006(四五年级)2.《中华上下五千年》2008(初一)3.《鲁滨孙漂流记》2008(初二)4.《钢铁是怎样炼成的》20 ... [详细]
author-avatar
月逝彼山
这个家伙很懒,什么也没留下!
PHP1.CN | 中国最专业的PHP中文社区 | DevBox开发工具箱 | json解析格式化 |PHP资讯 | PHP教程 | 数据库技术 | 服务器技术 | 前端开发技术 | PHP框架 | 开发工具 | 在线工具
Copyright © 1998 - 2020 PHP1.CN. All Rights Reserved | 京公网安备 11010802041100号 | 京ICP备19059560号-4 | PHP1.CN 第一PHP社区 版权所有