热门标签 | HotTags
当前位置:  开发笔记 > 编程语言 > 正文

吴裕雄python数据处理(1)

importtimeprint(time.time())print(time.localtime())print(time.strftime('%Y-%m-%d%X'

import time

print(time.time())
print(time.localtime())
print(time.strftime(‘%Y-%m-%d %X‘,time.localtime()))

技术分享图片

绘图显示中文配置

技术分享图片

技术分享图片

import matplotlib.pyplot as plt

a = [1,1,2,3]
b = [2,2,2,2]
plt.plot(a,b)
plt.title("天生自然")
plt.show()

技术分享图片

import pandas as pd

df = pd.read_csv("F:\\python3_pachongAndDatareduce\\data\\pandas data\\taobao_data.csv")
print(df.head())

技术分享图片

import pandas as pd

df = pd.read_csv("F:\\python3_pachongAndDatareduce\\data\\pandas data\\taobao_data.csv",delimiter=",",encoding="utf8",header=0)
print(df.head())

技术分享图片

import pandas as pd

df = pd.read_csv("F:\\python3_pachongAndDatareduce\\data\\pandas data\\taobao_data.csv",delimiter=",",encoding="utf8",header=0)
df.to_csv("E:\\temp\\taobao_price_data.csv", columns=["宝贝","价格"],index=False,header=True)

import pandas as pd

df = pd.read_csv("F:\\python3_pachongAndDatareduce\\data\\pandas data\\taobao_data.csv",delimiter=",",encoding="utf8",header=0)
print(df[0:3])

技术分享图片

import pandas as pd

df = pd.read_csv("F:\\python3_pachongAndDatareduce\\data\\pandas data\\taobao_data.csv",delimiter=",",encoding="utf8",header=0)
cols = df[["宝贝","价格"]]
print(cols.head())

技术分享图片

import pandas as pd

df = pd.read_csv("F:\\python3_pachongAndDatareduce\\data\\pandas data\\taobao_data.csv",delimiter=",",encoding="utf8",header=0)
a = df.ix[0:3,["宝贝","价格"]]
print(a)

技术分享图片

import pandas as pd

df = pd.read_csv("F:\\python3_pachongAndDatareduce\\data\\pandas data\\taobao_data.csv",delimiter=",",encoding="utf8",header=0)
df["销售量"] = df["价格"]*df["成交量"]
print(df.head())

技术分享图片

import pandas as pd

df = pd.read_csv("F:\\python3_pachongAndDatareduce\\data\\pandas data\\taobao_data.csv",delimiter=",",encoding="utf8",header=0)
a = df[(df["价格"]<100)&(df["成交量"]<10000)]
print(a)

技术分享图片

import pandas as pd

df = pd.read_csv("F:\\python3_pachongAndDatareduce\\data\\pandas data\\taobao_data.csv",delimiter=",",encoding="utf8",header=0)
print(df.head())
df1 = df.set_index("位置")
print(df1.head())
df2 = df1.sort_index()
print(df2.head())

技术分享图片

import pandas as pd

df = pd.read_csv("F:\\python3_pachongAndDatareduce\\data\\pandas data\\taobao_data.csv",delimiter=",",encoding="utf8",header=0)
df1 = df.set_index(["位置","卖家"])
print(df1.head())

技术分享图片

import pandas as pd

df = pd.read_csv("F:\\python3_pachongAndDatareduce\\data\\pandas data\\taobao_data.csv",delimiter=",",encoding="utf8",header=0)
df1 = df.set_index(["位置","卖家"]).sortlevel(0)
print(df1.head())

技术分享图片

import pandas as pd

df = pd.read_csv("F:\\python3_pachongAndDatareduce\\data\\pandas data\\taobao_data.csv",delimiter=",",encoding="utf8",header=0)
a = df.drop(["宝贝","卖家"],axis=1)
print(a.head())

b = df.drop(["宝贝","卖家"],axis=1).groupby("位置")
print(b.head())

技术分享图片

import pandas as pd

df = pd.read_csv("F:\\python3_pachongAndDatareduce\\data\\pandas data\\taobao_data.csv",delimiter=",",encoding="utf8",header=0)
a = df.drop(["宝贝","卖家"],axis=1).groupby("位置").mean()
print(a.head())

技术分享图片

import pandas as pd

df = pd.read_csv("F:\\python3_pachongAndDatareduce\\data\\pandas data\\taobao_data.csv",delimiter=",",encoding="utf8",header=0)
a = df.drop(["宝贝","卖家"],axis=1).groupby("位置").mean().sort_values("成交量",ascending=False)
print(a.head())

 技术分享图片

import pandas as pd

df = pd.read_csv("F:\\python3_pachongAndDatareduce\\data\\pandas data\\taobao_data.csv",delimiter=",",encoding="utf8",header=0)
a = df.drop(["宝贝","卖家"],axis=1).groupby("位置").sum().sort_values("成交量",ascending=False)
print(a.head())

技术分享图片

import pandas as pd

df = pd.read_csv("F:\\python3_pachongAndDatareduce\\data\\pandas data\\taobao_data.csv",delimiter=",",encoding="utf8",header=0)
print(df.info())

技术分享图片

import pandas as pd

df = pd.read_csv("F:\\python3_pachongAndDatareduce\\data\\pandas data\\taobao_data.csv",delimiter=",",encoding="utf8",header=0)
print(df.describe())

技术分享图片

import pandas as pd

df = pd.read_csv("F:\\python3_pachongAndDatareduce\\data\\pandas data\\taobao_data.csv",delimiter=",",encoding="utf8",header=0)
print(df.describe(include=["object"]))

技术分享图片

import pandas as pd

df = pd.read_csv("F:\\python3_pachongAndDatareduce\\data\\pandas data\\taobao_data.csv",delimiter=",",encoding="utf8",header=0)
a = df["成交量"].groupby(df["位置"])
print(a.head())

技术分享图片

import pandas as pd

df = pd.read_csv("F:\\python3_pachongAndDatareduce\\data\\pandas data\\taobao_data.csv",delimiter=",",encoding="utf8",header=0)
a = df["成交量"].groupby(df["位置"]).mean()
print(a.head())

技术分享图片

import pandas as pd

df = pd.read_csv("F:\\python3_pachongAndDatareduce\\data\\pandas data\\taobao_data.csv",delimiter=",",encoding="utf8",header=0)
a = df["成交量"].groupby([df["位置"],df["卖家"]]).mean()
print(a.head())

技术分享图片

import pandas as pd

df = pd.read_csv("F:\\python3_pachongAndDatareduce\\data\\pandas data\\taobao_data.csv",delimiter=",",encoding="utf8",header=0)
a = df.groupby("位置").mean()
print(a.head())

技术分享图片

import pandas as pd

df = pd.read_csv("F:\\python3_pachongAndDatareduce\\data\\pandas data\\taobao_data.csv",delimiter=",",encoding="utf8",header=0)
a = df.groupby(["位置","卖家"]).mean()
print(a.head())

技术分享图片

import pandas as pd

df = pd.read_csv("F:\\python3_pachongAndDatareduce\\data\\pandas data\\taobao_data.csv",delimiter=",",encoding="utf8",header=0)
a = df.groupby(["位置","卖家"]).size()
print(a.head())

技术分享图片

import pandas as pd

df = pd.read_csv("F:\\python3_pachongAndDatareduce\\data\\pandas data\\taobao_data.csv",delimiter=",",encoding="utf8",header=0)
a = df[30:35][["位置","卖家"]]
print(a)

b = df[90:95][["卖家","成交量"]]
print(b)

技术分享图片

import pandas as pd

df = pd.read_csv("F:\\python3_pachongAndDatareduce\\data\\pandas data\\taobao_data.csv",delimiter=",",encoding="utf8",header=0)
a = df[30:35][["位置","卖家"]]
b = df[30:35][["卖家","成交量"]]
c = pd.merge(a,b)
print(c)

技术分享图片

import pandas as pd

df = pd.read_csv("F:\\python3_pachongAndDatareduce\\data\\pandas data\\taobao_data.csv",delimiter=",",encoding="utf8",header=0)
a = df[30:35][["位置","卖家"]]
b = df[30:35][["卖家","成交量"]]
c = pd.merge(a,b,on="卖家")
print(c)

技术分享图片

import pandas as pd

df = pd.read_csv("F:\\python3_pachongAndDatareduce\\data\\pandas data\\taobao_data.csv",delimiter=",",encoding="utf8",header=0)
a = df[10:20][["位置","卖家"]]
b = df[30:40][["卖家","成交量"]]
c = pd.merge(a,b,how="outer")
print(c)

技术分享图片

import pandas as pd

df = pd.read_csv("F:\\python3_pachongAndDatareduce\\data\\pandas data\\taobao_data.csv",delimiter=",",encoding="utf8",header=0)
a = df[10:20][["位置","卖家"]]
b = df[30:40][["卖家","成交量"]]
c = pd.merge(a,b,how="left")
print(c)

技术分享图片

import pandas as pd

df = pd.read_csv("F:\\python3_pachongAndDatareduce\\data\\pandas data\\taobao_data.csv",delimiter=",",encoding="utf8",header=0)
a = df[10:20][["位置","卖家"]]
b = df[30:40][["卖家","成交量"]]
c = pd.merge(a,b,how="right")
print(c)

技术分享图片

import pandas as pd

df = pd.read_csv("F:\\python3_pachongAndDatareduce\\data\\pandas data\\taobao_data.csv",delimiter=",",encoding="utf8",header=0)
a = df[:10][["位置","卖家"]]
print(a)
b = df[:10][["卖家","成交量"]]
print(b)
c = pd.merge(a,b,how="right")
print(c)

技术分享图片

import pandas as pd

df = pd.read_csv("F:\\python3_pachongAndDatareduce\\data\\pandas data\\taobao_data.csv",delimiter=",",encoding="utf8",header=0)
a = df[:10][["位置","卖家"]]
b = df[:10][["卖家","成交量"]]
c = pd.merge(a,b,left_index=True,right_index=True)
print(c)

技术分享图片

import pandas as pd

df = pd.read_csv("F:\\python3_pachongAndDatareduce\\data\\pandas data\\taobao_data.csv",delimiter=",",encoding="utf8",header=0)
a = df[:10][["位置","卖家"]]
b = df[:10][["价格","成交量"]]
c = pd.merge(a,b,left_index=True,right_index=True)
print(c)

技术分享图片

import pandas as pd

df = pd.read_csv("F:\\python3_pachongAndDatareduce\\data\\pandas data\\taobao_data.csv",delimiter=",",encoding="utf8",header=0)
a = df[:10][["位置","卖家"]]
b = df[:10][["价格","成交量"]]
c = a.join(b)
print(c)

技术分享图片

import pandas as pd

df = pd.read_csv("F:\\python3_pachongAndDatareduce\\data\\pandas data\\taobao_data.csv",delimiter=",",encoding="utf8",header=0)
a = df[:5]["宝贝"]
b = df[5:10]["宝贝"]
c = df[10:15]["宝贝"]
d = pd.concat([a,b,c])
print(d)

技术分享图片

import pandas as pd

df = pd.read_csv("F:\\python3_pachongAndDatareduce\\data\\pandas data\\taobao_data.csv",delimiter=",",encoding="utf8",header=0)
a = df[:5]["宝贝"]
print(a)
b = df[:5]["价格"]
print(b)
c = df[:5]["成交量"]
print(c)
d = pd.concat([a,b,c],axis=1)
print(d)

技术分享图片

import pandas as pd

df = pd.read_csv("F:\\python3_pachongAndDatareduce\\data\\pandas data\\taobao_data.csv",delimiter=",",encoding="utf8",header=0)
a = df[:5][["位置","卖家"]]
print(a)
b = df[:5][["价格","成交量"]]
print(b)
c = pd.concat([a,b])
print(c)

技术分享图片

import pandas as pd

df = pd.read_csv("F:\\python3_pachongAndDatareduce\\data\\pandas data\\taobao_data.csv",delimiter=",",encoding="utf8",header=0)
a = df[:5][["位置","卖家"]]
print(a)
b = df[:5][["价格","成交量"]]
print(b)
c = pd.concat([a,b],axis=1)
print(c)

技术分享图片

吴裕雄 python 数据处理(1)


推荐阅读
  • 本文介绍了在Windows环境下使用pydoc工具的方法,并详细解释了如何通过命令行和浏览器查看Python内置函数的文档。此外,还提供了关于raw_input和open函数的具体用法和功能说明。 ... [详细]
  • 本文探讨了如何通过最小生成树(MST)来计算严格次小生成树。在处理过程中,需特别注意所有边权重相等的情况,以避免错误。我们首先构建最小生成树,然后枚举每条非树边,检查其是否能形成更优的次小生成树。 ... [详细]
  • QUIC协议:快速UDP互联网连接
    QUIC(Quick UDP Internet Connections)是谷歌开发的一种旨在提高网络性能和安全性的传输层协议。它基于UDP,并结合了TLS级别的安全性,提供了更高效、更可靠的互联网通信方式。 ... [详细]
  • 深入理解 Oracle 存储函数:计算员工年收入
    本文介绍如何使用 Oracle 存储函数查询特定员工的年收入。我们将详细解释存储函数的创建过程,并提供完整的代码示例。 ... [详细]
  • 深入理解Cookie与Session会话管理
    本文详细介绍了如何通过HTTP响应和请求处理浏览器的Cookie信息,以及如何创建、设置和管理Cookie。同时探讨了会话跟踪技术中的Session机制,解释其原理及应用场景。 ... [详细]
  • 本文介绍了一款用于自动化部署 Linux 服务的 Bash 脚本。该脚本不仅涵盖了基本的文件复制和目录创建,还处理了系统服务的配置和启动,确保在多种 Linux 发行版上都能顺利运行。 ... [详细]
  • 本文介绍如何通过Windows批处理脚本定期检查并重启Java应用程序,确保其持续稳定运行。脚本每30分钟检查一次,并在需要时重启Java程序。同时,它会将任务结果发送到Redis。 ... [详细]
  • 本文介绍如何使用 NSTimer 实现倒计时功能,详细讲解了初始化方法、参数配置以及具体实现步骤。通过示例代码展示如何创建和管理定时器,确保在指定时间间隔内执行特定任务。 ... [详细]
  • 本文介绍如何在 Xcode 中使用快捷键和菜单命令对多行代码进行缩进,包括右缩进和左缩进的具体操作方法。 ... [详细]
  • 在Linux系统中配置并启动ActiveMQ
    本文详细介绍了如何在Linux环境中安装和配置ActiveMQ,包括端口开放及防火墙设置。通过本文,您可以掌握完整的ActiveMQ部署流程,确保其在网络环境中正常运行。 ... [详细]
  • 如何在WPS Office for Mac中调整Word文档的文字排列方向
    本文将详细介绍如何使用最新版WPS Office for Mac调整Word文档中的文字排列方向。通过这些步骤,用户可以轻松更改文本的水平或垂直排列方式,以满足不同的排版需求。 ... [详细]
  • 理解存储器的层次结构有助于程序员优化程序性能,通过合理安排数据在不同层级的存储位置,提升CPU的数据访问速度。本文详细探讨了静态随机访问存储器(SRAM)和动态随机访问存储器(DRAM)的工作原理及其应用场景,并介绍了存储器模块中的数据存取过程及局部性原理。 ... [详细]
  • 几何画板展示电场线与等势面的交互关系
    几何画板是一款功能强大的物理教学软件,具备丰富的绘图和度量工具。它不仅能够模拟物理实验过程,还能通过定量分析揭示物理现象背后的规律,尤其适用于难以在实际实验中展示的内容。本文将介绍如何使用几何画板演示电场线与等势面之间的关系。 ... [详细]
  • MySQL中枚举类型的所有可能值获取方法
    本文介绍了一种在MySQL数据库中查询枚举(ENUM)类型字段所有可能取值的方法,帮助开发者更好地理解和利用这一数据类型。 ... [详细]
  • 本文介绍如何在应用程序中使用文本输入框创建密码输入框,并通过设置掩码来隐藏用户输入的内容。我们将详细解释代码实现,并提供专业的补充说明。 ... [详细]
author-avatar
月逝彼山
这个家伙很懒,什么也没留下!
PHP1.CN | 中国最专业的PHP中文社区 | DevBox开发工具箱 | json解析格式化 |PHP资讯 | PHP教程 | 数据库技术 | 服务器技术 | 前端开发技术 | PHP框架 | 开发工具 | 在线工具
Copyright © 1998 - 2020 PHP1.CN. All Rights Reserved | 京公网安备 11010802041100号 | 京ICP备19059560号-4 | PHP1.CN 第一PHP社区 版权所有