热门标签 | HotTags
当前位置:  开发笔记 > 编程语言 > 正文

物体分割DeepWatershedTransformforInstanceSegmentation

DeepWatershedTransformforInstanceSegmentationCVPR2017https:github.commin2209dwt本文将传统的wate

Deep Watershed Transform for Instance Segmentation
CVPR2017
https://github.com/min2209/dwt

本文将传统的 watershed transform 分割算法 结合 CNN网络 实现 物体分割

这里写图片描述

首先来回顾一下 instance level segmentation 都有哪些方法:
1)Proposal based: 基于候选区域提取的方法,首先提取物体的候选区域,然后再对候选区域进行细化分割 refinement
2)Deep structured models: CNN+ conditional random field (CRF)
3)Template matching: CNN+ template matching scheme
4) Recurrent Networks: CNN+ recurrent neural network (RNN) , ConvLSTM
5) CNN[15]: 只用CNN来完成
6)Proposal + recursion [14]: CNN 候选区域+ recursion

3 A Review on the Watershed Transform
首先来看看分水岭算法的大致思路:我们可以将一幅灰度图像看作一个地形图 topographic surface,我们从地形图的最低点 minima 开始注水,同时我们建造谁把barriers 用于防止两个不同注水的的水融合到一起去。这样我们就可以将地形图分割为若干区域,这里每个区域我们称之为 catchment basins,我们建造的水坝 barriers or watershed lines 表示两物体的边界线。
这里写图片描述这里写图片描述

分水岭算法一个问题就是容易过分割。这里我们使用 CNN 网络来解决这个过分割问题。
这里写图片描述

4 Deep Watershed Tranform
这里我们希望使用 CNN网络来学习预测 一个 energy landscape,其每个 basin 对应一个物体,如上图的下半部分所示。但是从头开始学习这个 energy landscape 很难。这里我们定义了一个中间任务,就是我们学习 分水岭能量图的下降方向 direction of descent of the watershed energy,然后将这个输入到另一个网络用于学习最终的能量图。我们可以将这个中间结果理解为 学习每个目标内的点到其边界的距离,learning to perform the distance transform of each point within an object instance to the instance’s boundary
这里写图片描述

我们的整体网络结果如下图所示:
这里写图片描述

4.1. Direction Network (DN)
这里的输入只关注物体区域, the original RGB image gated by semantic segmentation(PSPNet [34]),非物体区域清零。input image is augmented by adding the semantic segmentation as a fourth channel

这一步主要用于 estimate the direction of descent of the energy at each pixel,对应 Figure 4 中的 f

4.2. Watershed Transform Network (WTN)
基于分水岭能量图的下降方向图,我们来 predict a modified watershed transform energy
对应 Figure 4 中的 g

4.3. Network Training
首先预训练 DN and WTN networks
分别定义了几个损失函数:
Direction Network pre-training: mean squared error in the angular domain

Watershed Network pre-training: modified cross-entropy loss

End-to-end fine-tuning:

4.4. Energy Cut and Instance Extraction
得到最终的分割结果

5 Experimental Evaluation
Cityscapes
这里写图片描述

这里写图片描述

这里写图片描述


推荐阅读
  • 每日前端实战:148# 视频教程展示纯 CSS 实现按钮两侧滑入装饰元素的悬停效果
    通过点击页面右侧的“预览”按钮,您可以直接在当前页面查看效果,或点击链接进入全屏预览模式。该视频教程展示了如何使用纯 CSS 实现按钮两侧滑入装饰元素的悬停效果。视频内容具有互动性,观众可以实时调整代码并观察变化。访问以下链接体验完整效果:https://codepen.io/comehope/pen/yRyOZr。 ... [详细]
  • 本文介绍了几种常用的图像相似度对比方法,包括直方图方法、图像模板匹配、PSNR峰值信噪比、SSIM结构相似性和感知哈希算法。每种方法都有其优缺点,适用于不同的应用场景。 ... [详细]
  • 题目《BZOJ2654: Tree》的时间限制为30秒,内存限制为512MB。该问题通过结合二分查找和Kruskal算法,提供了一种高效的优化解决方案。具体而言,利用二分查找缩小解的范围,再通过Kruskal算法构建最小生成树,从而在复杂度上实现了显著的优化。此方法不仅提高了算法的效率,还确保了在大规模数据集上的稳定性能。 ... [详细]
  • POJ 2482 星空中的星星:利用线段树与扫描线算法解决
    在《POJ 2482 星空中的星星》问题中,通过运用线段树和扫描线算法,可以高效地解决星星在窗口内的计数问题。该方法不仅能够快速处理大规模数据,还能确保时间复杂度的最优性,适用于各种复杂的星空模拟场景。 ... [详细]
  • 探索聚类分析中的K-Means与DBSCAN算法及其应用
    聚类分析是一种用于解决样本或特征分类问题的统计分析方法,也是数据挖掘领域的重要算法之一。本文主要探讨了K-Means和DBSCAN两种聚类算法的原理及其应用场景。K-Means算法通过迭代优化簇中心来实现数据点的划分,适用于球形分布的数据集;而DBSCAN算法则基于密度进行聚类,能够有效识别任意形状的簇,并且对噪声数据具有较好的鲁棒性。通过对这两种算法的对比分析,本文旨在为实际应用中选择合适的聚类方法提供参考。 ... [详细]
  • 本文节选自《NLTK基础教程——用NLTK和Python库构建机器学习应用》一书的第1章第1.2节,作者Nitin Hardeniya。本文将带领读者快速了解Python的基础知识,为后续的机器学习应用打下坚实的基础。 ... [详细]
  • 三角测量计算三维坐标的代码_双目三维重建——层次化重建思考
    双目三维重建——层次化重建思考FesianXu2020.7.22atANTFINANCIALintern前言本文是笔者阅读[1]第10章内容的笔记,本文从宏观的角度阐 ... [详细]
  • 本文介绍如何使用OpenCV和线性支持向量机(SVM)模型来开发一个简单的人脸识别系统,特别关注在只有一个用户数据集时的处理方法。 ... [详细]
  • 本文提出了一种基于栈结构的高效四则运算表达式求值方法。该方法能够处理包含加、减、乘、除运算符以及十进制整数和小括号的算术表达式。通过定义和实现栈的基本操作,如入栈、出栈和判空等,算法能够准确地解析并计算输入的表达式,最终输出其计算结果。此方法不仅提高了计算效率,还增强了对复杂表达式的处理能力。 ... [详细]
  • 深入解析C语言中结构体的内存对齐机制及其优化方法
    为了提高CPU访问效率,C语言中的结构体成员在内存中遵循特定的对齐规则。本文详细解析了这些对齐机制,并探讨了如何通过合理的布局和编译器选项来优化结构体的内存使用,从而提升程序性能。 ... [详细]
  • 为了确保iOS应用能够安全地访问网站数据,本文介绍了如何在Nginx服务器上轻松配置CertBot以实现SSL证书的自动化管理。通过这一过程,可以确保应用始终使用HTTPS协议,从而提升数据传输的安全性和可靠性。文章详细阐述了配置步骤和常见问题的解决方法,帮助读者快速上手并成功部署SSL证书。 ... [详细]
  • 在Linux系统中,网络配置是至关重要的任务之一。本文详细解析了Firewalld和Netfilter机制,并探讨了iptables的应用。通过使用`ip addr show`命令来查看网卡IP地址(需要安装`iproute`包),当网卡未分配IP地址或处于关闭状态时,可以通过`ip link set`命令进行配置和激活。此外,文章还介绍了如何利用Firewalld和iptables实现网络流量控制和安全策略管理,为系统管理员提供了实用的操作指南。 ... [详细]
  • 在iOS开发中,基于HTTPS协议的安全网络请求实现至关重要。HTTPS(全称:HyperText Transfer Protocol over Secure Socket Layer)是一种旨在提供安全通信的HTTP扩展,通过SSL/TLS加密技术确保数据传输的安全性和隐私性。本文将详细介绍如何在iOS应用中实现安全的HTTPS网络请求,包括证书验证、SSL握手过程以及常见安全问题的解决方法。 ... [详细]
  • 从2019年AI顶级会议最佳论文,探索深度学习的理论根基与前沿进展 ... [详细]
  • 在尝试对从复杂 XSD 生成的类进行序列化时,遇到了 `NullReferenceException` 错误。尽管已经花费了数小时进行调试和搜索相关资料,但仍然无法找到问题的根源。希望社区能够提供一些指导和建议,帮助解决这一难题。 ... [详细]
author-avatar
手机用户2502916905
这个家伙很懒,什么也没留下!
PHP1.CN | 中国最专业的PHP中文社区 | DevBox开发工具箱 | json解析格式化 |PHP资讯 | PHP教程 | 数据库技术 | 服务器技术 | 前端开发技术 | PHP框架 | 开发工具 | 在线工具
Copyright © 1998 - 2020 PHP1.CN. All Rights Reserved | 京公网安备 11010802041100号 | 京ICP备19059560号-4 | PHP1.CN 第一PHP社区 版权所有