热门标签 | HotTags
当前位置:  开发笔记 > 开发工具 > 正文

文摘:模式识别和机器学习有什么区别?

1.「整理:深度学习vs机器学习vs模式识别」https:www.csdn.netarticle2015-03-242824301摘录:在90年代

1.「整理:深度学习 vs 机器学习 vs 模式识别 

https://www.csdn.net/article/2015-03-24/2824301

摘录:

在90年代初,人们开始意识到一种可以更有效地构建模式识别算法的方法,那就是用数据(可以通过廉价劳动力采集获得)去替换专家(具有很多图像方面知识的人)。因此,我们搜集大量的人脸和非人脸图像,再选择一个算法,然后冲着咖啡、晒着太阳,等着计算机完成对这些图像的学习。这就是机器学习的思想。“机器学习”强调的是,在给计算机程序(或者机器)输入一些数据后,它必须做一些事情,那就是学习这些数据,而这个学习的步骤是明确的。相信我,就算计算机完成学习要耗上一天的时间,也会比你邀请你的研究伙伴来到你家然后专门手工得为这个任务设计一些分类规则要好。


2.「模式识别、机器学习傻傻分不清?给我三分钟!」

https://baijiahao.baidu.com/s?id=1597159183746168684&wfr=spider&for=pc

摘录:

例如人类见到一个东西之后,通常就会下意识地给其归类:是动物还是植物,属于哪一门纲目属科,是否可以药用,有果实吗,花朵是否漂亮,是否有毒……这一大串归类构成了人们对于这种事物的整体认知。这就属于人类对于模式的识别,这种技能对于人们甚至是一些动物来说,是非常简单而且几乎是与生俱来的。

但是在模式识别中,机器似乎并不如人们所预料的那样“智能”。这种经由人为提取特征后交给机器,然后让机器去判断其它事的属性的工作流程就像是按图索骥,按照这种方法,虽然有可能找到一匹真正的汗血宝马,但是也有可能找回一只满身恶臭的瘌蛤蟆。

因为对机器来说,哪怕是分辨最简单的“0”与“O”与“o”以及“。”都要费九牛二虎之力。而这也就是为什么我们在使用一些图片转文字等软件时,发现通常经过“翻译”的文本变得错字连篇,而且有时候错的不可思议。

尤其是目前还在大学里为论文苦苦挣扎的学生党,每当用软件转换CAJ文献或者PDF格式的材料时,时不时就会让人觉得这种人工智能简直就是“人工智障”。

不同于模式识别中人类主动去描述某些特征给机器,机器学习可以这样理解:机器从已知的经验数据(样本)中,通过某种特定的方法(算法),自己去寻找提炼(训练/学习)出一些规律(模型);提炼出的规律就可以用来判断一些未知的事情(预测)。

也就是说,模式识别和机器学习的区别在于:前者喂给机器的是各种特征描述,从而让机器对未知的事物进行判断;后者喂给机器的是某一事物的海量样本,让机器通过样本来自己发现特征,最后去判断某些未知的事物。

通俗些来说,模式识别更像是以前我们经历的填鸭式教育,老师教给学生的知识都是纸上谈兵;而机器学习则更像是读万卷书行万里路。

从技术角度分析,机器学习一般会将人类投喂的各种样本以一种数据的形式解析。我们看到的黑色其实只是电脑中RGB都为0的三个参数,白色则是RGB都为255的三个参数。因此在机器的世界里对黑白的分辨是分外容易的。

机器根据某一事物的海量样本,总结出这一类型事物所具有的普遍规律,总结过程所使用的技能就是我们常说的算法。当足够多的样本使得算法能够总结出一套行之有效的规律后,机器就可以用这些规律对真实世界中的事件做出决策和预测。

 

比如,机器通过一百万个单身狗的样本,总结出了单身狗所具有的一些属性。当下次再给一个样本时,机器就可以很快判断出这个样本究竟是不是单身狗。

如果统计进一步细化,看一看原始样本中的单身狗都分别是多大年龄脱单,他们的脱单对象都是什么类型,那么机器就可以判断出下一个单身狗样本究竟会在十年后脱单,还是会一辈子孤单。

说到这里,芯君有些心疼自己……

 

听起来是不是有那么一点点的玄幻?不要怀疑,机器的预测肯定会比塔罗牌、星座更准,它甚至比你自己还要了解你。

值得一提的是,在机器学习中,尽管电脑可以自行通过样本总结规律,但是依旧需要人工干预来为其提供规律总结的方向以及维度。例如色彩识别需要统计色彩的RGB或者CMYK值,但是要想总结出单身狗的特质,需要统计的就不仅仅是一两个简单的维度了。

例如年龄的数字,身高的数字,肤色的RGB,学识的等级,还有掌握的其他技能例如撒娇、体贴、男子力、女子力,性格的归类,社交程度的评价等等。

但是,最重要的一个参数就是脸,嗯,没错,就是我们常说的颜值。

最常见的两种模型分别为符号主义所使用的决策树模型和联结主义所使用的神经网络模型,每种又分别有着相应的多种算法。也就正如武林中的内功有降龙十八掌、九阳神功还有九阴真经,外在技术修行则有独孤九剑、落英神剑以及名门暗器等等。

尽管技术不断兴替,但无一例外的是,新技术的发展是总是建立在原有技术的基础之上。每一个新的成就都是站在巨人的肩膀上所取得的。

尽管新的技术会不断占领潮流,但是这并不意味着旧有技术已经过时。在人工智能领域,模式识别虽然已经逐渐式微,但是它依旧有其独特的作用。例如在一些简单的色彩识别领域,参数维度相对单一,界定也相对明显,如果用大数据去建模计算,无疑是一种大才小用。闻道有先后,术业有专攻——不同的算法,可以在不同领域发挥各自的效用。

我们一起探讨AI落地的最后一公里。


3.「模式识别、机器学习的区别和联系」

https://blog.csdn.net/qq_33414271/article/details/78682239

模式识别是根据已有的特征,通过参数或者非参数的方法给定模型中的参数,从而达到判别目的的;机器学习侧重于在特征不明确的情况下,用某种具有普适性的算法给定分类规则;学过多元统计的可以这样理解:模式识别的概念可以类比判别分析,是确定的,可检验的,有统计背景的(或者更进一步说有机理性基础理论背景),而机器学习的概念可以类比聚类分析(聚类本身就是一种典型的机器学习方法),对“类”的严格定义尚不明确,更谈不上检验。


推荐阅读
  • 本文探讨了图像标签的多种分类场景及其在以图搜图技术中的应用,涵盖了从基础理论到实际项目实施的全面解析。 ... [详细]
  • 强人工智能时代,区块链的角色与前景
    随着强人工智能的崛起,区块链技术在新的技术生态中扮演着怎样的角色?本文探讨了区块链与强人工智能之间的互补关系及其在未来技术发展中的重要性。 ... [详细]
  • 本文详细介绍了 TensorFlow 的入门实践,特别是使用 MNIST 数据集进行数字识别的项目。文章首先解析了项目文件结构,并解释了各部分的作用,随后逐步讲解了如何通过 TensorFlow 实现基本的神经网络模型。 ... [详细]
  • 2017年人工智能领域的十大里程碑事件回顾
    随着2018年的临近,我们一同回顾过去一年中人工智能领域的重要进展。这一年,无论是政策层面的支持,还是技术上的突破,都显示了人工智能发展的迅猛势头。以下是精选的2017年人工智能领域最具影响力的事件。 ... [详细]
  • 吴恩达推出TensorFlow实践课程,Python基础即可入门,四个月掌握核心技能
    量子位报道,deeplearning.ai最新发布了TensorFlow实践课程,适合希望使用TensorFlow开发AI应用的学习者。该课程涵盖机器学习模型构建、图像识别、自然语言处理及时间序列预测等多个方面。 ... [详细]
  • 京东AI创新之路:周伯文解析京东AI战略的独特之处
    2018年4月15日,京东在北京举办了人工智能创新峰会,会上首次公开了京东AI的整体布局和发展方向。此次峰会不仅展示了京东在AI领域的最新成果,还标志着京东AI团队的首次集体亮相。本文将深入探讨京东AI的发展策略及其与BAT等公司的不同之处。 ... [详细]
  • ICML2020: 利用贝叶斯元学习在全局关系图上实现小样本关系抽取
    本文介绍了加拿大蒙特利尔大学Mila研究所唐建教授团队在ICML2020上发布的一项研究,该研究探讨了如何利用全局关系图来探索句子间的新关系,并提出了一种创新的贝叶斯元学习方法。 ... [详细]
  • Python库在GIS与三维可视化中的应用
    Python库极大地扩展了GIS的能力,使其能够执行复杂的数据科学任务。本文探讨了几个关键的Python库,这些库不仅增强了GIS的核心功能,还推动了地理信息系统向更高层次的应用发展。 ... [详细]
  • 随着技术的发展,黑客开始利用AI技术在暗网中创建用户的‘数字孪生’,这一现象引起了安全专家的高度关注。 ... [详细]
  • 在Ubuntu 16.04中使用Anaconda安装TensorFlow
    本文详细介绍了如何在Ubuntu 16.04系统上通过Anaconda环境管理工具安装TensorFlow。首先,需要下载并安装Anaconda,然后配置环境变量以确保系统能够识别Anaconda命令。接着,创建一个特定的Python环境用于安装TensorFlow,并通过指定的镜像源加速安装过程。最后,通过一个简单的线性回归示例验证TensorFlow的安装是否成功。 ... [详细]
  • 获得头条Offer后,我感激的七个技术公众号
    是否感觉订阅的公众号过多,浏览时缺乏目标性,未能获取实质性的知识?本文将介绍如何精简公众号列表,提升信息吸收效率,并推荐几个高质量的技术公众号。 ... [详细]
  • 大数据时代的机器学习:人工特征工程与线性模型的局限
    本文探讨了在大数据背景下,人工特征工程与线性模型的应用及其局限性。随着数据量的激增和技术的进步,传统的特征工程方法面临挑战,文章提出了未来发展的可能方向。 ... [详细]
  • 在中国医疗行业面临高度监管和市场垄断的背景下,医疗领域的创新面临诸多挑战。本文通过探讨技术变革与商业模式的结合,为医疗AI的未来发展提供了新的视角。 ... [详细]
  • 一项来自Quantamagazine的最新研究揭示,借助人工智能的深度学习技术,特别是深度神经网络,科学家们能够在数学建模领域取得突破,显著提高了处理复杂系统中偏微分方程的速度与效率。 ... [详细]
  • 智慧城市建设现状及未来趋势
    随着新基建政策的推进及‘十四五’规划的实施,我国正步入以5G、人工智能等先进技术引领的智慧经济新时代。规划强调加速数字化转型,促进数字政府建设,新基建政策亦倡导城市基础设施的全面数字化。本文探讨了智慧城市的发展背景、全球及国内进展、市场规模、架构设计,以及百度、阿里、腾讯、华为等领军企业在该领域的布局策略。 ... [详细]
author-avatar
蓝蓝__的夜夜
这个家伙很懒,什么也没留下!
PHP1.CN | 中国最专业的PHP中文社区 | DevBox开发工具箱 | json解析格式化 |PHP资讯 | PHP教程 | 数据库技术 | 服务器技术 | 前端开发技术 | PHP框架 | 开发工具 | 在线工具
Copyright © 1998 - 2020 PHP1.CN. All Rights Reserved | 京公网安备 11010802041100号 | 京ICP备19059560号-4 | PHP1.CN 第一PHP社区 版权所有