热门标签 | HotTags
当前位置:  开发笔记 > 编程语言 > 正文

微服务09_分布式搜索引擎ES—第一篇

微服务09_分布式搜索引擎ES一、认识elasticsearch1、什么是ES1.介绍ES2.ES的底层是lucene3.为什么学习ES:2、倒排索引的概念模拟如何倒

微服务09_分布式搜索引擎ES

  • 一、认识elasticsearch
    • 1、什么是ES
      • 1.介绍ES
      • 2.ES的底层是lucene
      • 3.为什么学习ES:
    • 2、倒排索引的概念
      • 模拟如何倒排索引
    • 3、es的一些概念
      • 1.文档,类似一条条数据
      • **索引映射(Index)**,就是相同类型的文档的集合。类似表
      • myql 和es对比:
  • 二、安装es
    • docker的常用命令:
    • 创建网络
    • 1.安装ES:
    • 2.运行
  • 三、安装Kibana
    • 运行docker命令,部署单点es:
  • 四、安装IK分词器
    • 4.1在线安装ik插件(较慢)
    • 4.2.离线安装ik插件(推荐)
      • 1)查看数据卷目录
      • 2)解压缩分词器安装包
      • 3)上传到es容器的插件数据卷中
      • 4)重启容器
      • 5)测试:
    • 4.3安装扩展词词典
      • 测试:添加之前和之后:
      • 总结
  • 五、索引库操作
    • 5.1.mapping映射属性
    • 5.2.索引库的CRUD
      • 5.2.1.创建索引库和映射
        • 基本语法:
        • 示例:
      • 5.2.2.查询索引库 get
      • 5.2.3.修改索引库。put只能添加
      • 5.2.4.删除索引库delete
      • 5.2.5.总结
  • 六.文档操作
    • 6.1.新增文档
    • 6.2.查询文档
    • 6.3.删除文档
    • 6.4.修改文档
      • 6.4.1.全量修改
      • 6.4.2.增量修改
    • 6.5.总结


一、认识elasticsearch

1、什么是ES


1.介绍ES

elasticsearch 是一款非常强大的开源搜索引擎,可以帮助我们从海量数据中快速找到需要的内容。
elasticsearch结合kibana、Logstash、Beats,也就是elastic stack(ELK)。被广泛应用在日志数据分析、实时监控等领域

日志可视化:项目在运行时会产生海量的日志,日志可以方便我们定位BUG。而ELK可以将日志可视化进行展示,从而方便了找出BUG.
实时监控:项目运行过程中的状态也是数据,cup、内存、访问情况等等。


  • elasticseratch 是elastic stack的核心,负责存储、搜索、分析数据
    在这里插入图片描述

2.ES的底层是lucene

Lucene是一个JAVA语言的搜索引擎类库,是Apache公司的顶级项目,由1999年开发。官网地址https://lucene.apache.rog/

类库:就是一个jar包

Lucene的优势:

  • 以扩展
  • 高性能(基于倒排索引的数据结构)

Lucene的缺点:

  • 只限于java语言开发
  • 学习曲线陡峭
  • 不支持水平扩展

3.为什么学习ES:

相比lucene,elasticsearch具备的优点是:

  • 支持分布式,可水平扩展
  • 提供Restful接口,可被任何语言调用

elasticsearch:开源的分布式搜索引擎

2、倒排索引的概念


  • 什么是正向索引:
    基于文档id创建索引。查询词条时必须先找到文档,而后判断是否包含词条。

  • 什么是倒排索引:
    对文档内容分词,对词条创建索引,并记录词条所在文档的信息。查询时先根据词条查询到文档id,而后获取到文档。


倒排索引是基于传统数据库正向索引对比得出的:倒排索引。
例如:
mysql的正向索引:基于id创建索引,形成B+树,根据id进行检索的速度非常快。
如果是搜索的不是id,而是一个词语,一段话。如果正向搜索进行局部内容检索,通过模糊查询,效率很低。

ES的倒排索引:在创建的时候,会形成一个新的表格,有两个字段一个是词条,一个文档id。

文档(document):每条数据就是一个文档。
词条(term):文档按照语义分成的词语。【具有唯一性】

那么倒排文档在存储时,会先把文档内容分成词条进行存储。例如小米手机。分成:词条是:小米、手机。文档id:都是1
在这里插入图片描述
词条term字段是不会重复的,因为是唯一的,就可以创建索引,数据较少可以使用hash法,也可以使用B+树,为词条创建唯一索引。

模拟如何倒排索引

例如搜索:华为手机。
第一步:会先将“华为手机”内容进行分词,从而得到“华为”和“手机”这样的词条。
第二步:拿着这两个词条,去倒排索引中,进行查询。
第三步:就能查到相应的词条所对应的文档id。在找出关联度最高的文档,进行排序。
第四步:根据文档id,查询文档。由于是拿着具体id来进行正向索引,索引可以快速得到文档了。
第五步:将结果,放到结果集当中。

一共经历了两次检索:
一次是根据词条去词条列表找文档id。
根据文档id找文档

索然是两次检索,但是每次都是根据索引进行查询。效率是非常的高。

在这里插入图片描述

3、es的一些概念


1.文档,类似一条条数据


  • elasticsearch是面向**文档(Document)**存储的,可以是数据库中的一条商品数据,一个订单信息。文档数据会被序列化为json格式后存储在elasticsearch中:
    在这里插入图片描述

索引映射(Index),就是相同类型的文档的集合。类似表

例如:

  • 所有用户文档,就可以组织在一起,称为用户的索引;
  • 所有商品的文档,可以组织在一起,称为商品的索引;
  • 所有订单的文档,可以组织在一起,称为订单的索引;
    在这里插入图片描述
    因此,我们可以把索引当做是数据库中的表。

数据库的表会有约束信息,用来定义表的结构、字段的名称、类型等信息。因此,索引库中就有映射(mapping),是索引中文档的字段约束信息,类似表的结构约束.

myql 和es对比:

在这里插入图片描述

  • Mysql:擅长事务类型操作,可以确保数据的安全和一致性

  • Elasticsearch:擅长海量数据的搜索、分析、计算

因此在企业中,往往是两者结合使用:

  • 对安全性要求较高的写操作,使用mysql实现
  • 对查询性能要求较高的搜索需求,使用elasticsearch实现
  • 两者再基于某种方式,实现数据的同步,保证一致性

二、安装es

docker的常用命令:

//启动:
systemctl start docker
//检查是否启动成功:
docker -v
//查看docker的镜像:
docker images
//查看启动后的容器:
docker ps
//删除容器:
docker stop es
docker rm es

创建网络

因为我们还需要部署kibana容器,因此需要让es和kibana容器互联。这里先创建一个网络:

docker network create es-net

1.安装ES:

这里我们采用elasticsearch的7.12.1版本的镜像,这个镜像体积非常大,接近1G。不建议大家自己pull。
建议将下载好的安装包.tar文件,将其上传到虚拟机中,然后运行命令加载即可:

# 导入数据
docker load -i es.tar

同理还有kibana的tar包也需要这样做。

2.运行

运行docker命令,部署单点es:

docker run -d \--name es \-e "ES_JAVA_OPTS=-Xms512m -Xmx512m" \-e "discovery.type=single-node" \-v es-data:/usr/share/elasticsearch/data \-v es-plugins:/usr/share/elasticsearch/plugins \--privileged \--network es-net \-p 9200:9200 \-p 9300:9300 \
elasticsearch:7.12.1

命令解释:

  • -e "cluster.name=es-docker-cluster":设置集群名称
  • -e "http.host=0.0.0.0":监听的地址,可以外网访问
  • -e "ES_JAVA_OPTS=-Xms512m -Xmx512m":内存大小
  • -e "discovery.type=single-node":非集群模式
  • -v es-data:/usr/share/elasticsearch/data:挂载逻辑卷,绑定es的数据目录
  • -v es-logs:/usr/share/elasticsearch/logs:挂载逻辑卷,绑定es的日志目录
  • -v es-plugins:/usr/share/elasticsearch/plugins:挂载逻辑卷,绑定es的插件目录
  • --privileged:授予逻辑卷访问权
  • --network es-net :加入一个名为es-net的网络中
  • -p 9200:9200:端口映射配置

在浏览器中输入:http://192.168.150.101:9200 即可看到elasticsearch的响应结果:

在这里插入图片描述

三、安装Kibana

docker load -i kibana.tar

运行docker命令,部署单点es:

运行docker命令,部署kibana

docker run -d \
--name kibana \
-e ELASTICSEARCH_HOSTS=http://es:9200 \
--network=es-net \
-p 5601:5601 \
kibana:7.12.1

  • --network es-net :加入一个名为es-net的网络中,与elasticsearch在同一个网络中
  • -e ELASTICSEARCH_HOSTS=http://es:9200":设置elasticsearch的地址,因为kibana已经与elasticsearch在一个网络,因此可以用容器名直接访问elasticsearch
  • -p 5601:5601:端口映射配置

此时,在浏览器输入地址访问:http://192.168.150.101:5601,即可看到结果
在这里插入图片描述

四、安装IK分词器

ES在创建倒排索引时,需要对文档内容进行分词。
搜索时,需要对内容输入,进行分词


4.1在线安装ik插件(较慢)

# 进入容器内部
docker exec -it elasticsearch /bin/bash# 在线下载并安装
./bin/elasticsearch-plugin install https://github.com/medcl/elasticsearch-analysis-ik/releases/download/v7.12.1/elasticsearch-analysis-ik-7.12.1.zip#退出
exit
#重启容器
docker restart elasticsearch

4.2.离线安装ik插件(推荐)


1)查看数据卷目录

安装插件需要知道elasticsearch的plugins目录位置,而我们用了数据卷挂载,因此需要查看elasticsearch的数据卷目录,通过下面命令查看:

docker volume inspect es-plugins

显示结果:

[{"CreatedAt": "2022-05-06T10:06:34+08:00","Driver": "local","Labels": null,"Mountpoint": "/var/lib/docker/volumes/es-plugins/_data","Name": "es-plugins","Options": null,"Scope": "local"}
]

在这里插入图片描述

说明plugins目录被挂载到了:/var/lib/docker/volumes/es-plugins/_data这个目录中。

2)解压缩分词器安装包

下面我们需要把课前资料中的ik分词器解压缩,重命名为ik

在这里插入图片描述

3)上传到es容器的插件数据卷中

也就是/var/lib/docker/volumes/es-plugins/_data:

4)重启容器

# 4、重启容器
docker restart es

# 查看es日志
docker logs -f es

5)测试:

IK分词器包含两种模式:

  • ik_smart:最少切分

  • ik_max_word:最细切分

在这里插入图片描述

GET /_analyze
{"analyzer": "ik_max_word","text": "黑马程序员学习java太棒了"
}

结果:

{"tokens" : [{"token" : "黑马","start_offset" : 0,"end_offset" : 2,"type" : "CN_WORD","position" : 0},{"token" : "程序员","start_offset" : 2,"end_offset" : 5,"type" : "CN_WORD","position" : 1},{"token" : "程序","start_offset" : 2,"end_offset" : 4,"type" : "CN_WORD","position" : 2},{"token" : "员","start_offset" : 4,"end_offset" : 5,"type" : "CN_CHAR","position" : 3},{"token" : "学习","start_offset" : 5,"end_offset" : 7,"type" : "CN_WORD","position" : 4},{"token" : "java","start_offset" : 7,"end_offset" : 11,"type" : "ENGLISH","position" : 5},{"token" : "太棒了","start_offset" : 11,"end_offset" : 14,"type" : "CN_WORD","position" : 6},{"token" : "太棒","start_offset" : 11,"end_offset" : 13,"type" : "CN_WORD","position" : 7},{"token" : "了","start_offset" : 13,"end_offset" : 14,"type" : "CN_CHAR","position" : 8}]
}

4.3安装扩展词词典

随着互联网的发展,“造词运动”也越发的频繁。出现了很多新的词语,在原有的词汇列表中并不存在。比如:“奥力给”,“传智播客” 等。

所以我们的词汇也需要不断的更新,IK分词器提供了扩展词汇的功能。

1)打开IK分词器config目录:
在这里插入图片描述

2)在IKAnalyzer.cfg.xml配置文件内容添加:


DOCTYPE properties SYSTEM "http://java.sun.com/dtd/properties.dtd">
<properties><comment>IK Analyzer 扩展配置comment><entry key&#61;"ext_dict">ext.dicentry><entry key&#61;"ext_stopwords">stopword.dicentry>
properties>

3&#xff09;新建一个 ext.dic&#xff0c;可以参考config目录下复制一个配置文件进行修改

传智播客
奥力给

4&#xff09;重启elasticsearch

docker restart es# 查看 日志
docker logs -f elasticsearch

测试&#xff1a;添加之前和之后&#xff1a;

在这里插入图片描述
在这里插入图片描述

总结

分词器的作用是什么&#xff1f;

  • 创建倒排索引时对文档分词
  • 用户搜索时&#xff0c;对输入的内容分词

IK分词器有几种模式&#xff1f;

  • ik_smart&#xff1a;智能切分&#xff0c;粗粒度
  • ik_max_word&#xff1a;最细切分&#xff0c;细粒度

IK分词器如何拓展词条&#xff1f;如何停用词条&#xff1f;

  • 利用config目录的IkAnalyzer.cfg.xml文件添加拓展词典和停用词典
  • 在词典中添加拓展词条或者停用词条

五、索引库操作

索引库就类似数据库表&#xff0c;mapping映射就类似表的结构。

我们要向es中存储数据&#xff0c;必须先创建“库”和“表”。

5.1.mapping映射属性

mapping是对索引库中文档的约束&#xff0c;常见的mapping属性包括&#xff1a;

  • type&#xff1a;字段数据类型&#xff0c;常见的简单类型有&#xff1a;
    • 字符串&#xff1a;text&#xff08;可分词的文本&#xff09;、keyword&#xff08;精确值&#xff0c;例如&#xff1a;品牌、国家、ip地址&#xff09;
    • 数值&#xff1a;long、integer、short、byte、double、float、
    • 布尔&#xff1a;boolean
    • 日期&#xff1a;date
    • 对象&#xff1a;object
  • index&#xff1a;是否创建索引&#xff0c;默认为true
  • analyzer&#xff1a;使用哪种分词器
  • properties&#xff1a;该字段的子字段

例如下面的json文档&#xff1a;

{"age": 21,"weight": 52.1,"isMarried": false,"info": "黑马程序员Java讲师","email": "zy&#64;itcast.cn","score": [99.1, 99.5, 98.9],"name": {"firstName": "云","lastName": "赵"}
}

对应的每个字段映射&#xff08;mapping&#xff09;&#xff1a;

  • age&#xff1a;类型为 integer&#xff1b;参与搜索&#xff0c;因此需要index为true&#xff1b;无需分词器
  • weight&#xff1a;类型为float&#xff1b;参与搜索&#xff0c;因此需要index为true&#xff1b;无需分词器
  • isMarried&#xff1a;类型为boolean&#xff1b;参与搜索&#xff0c;因此需要index为true&#xff1b;无需分词器
  • info&#xff1a;类型为字符串&#xff0c;需要分词&#xff0c;因此是text&#xff1b;参与搜索&#xff0c;因此需要index为true&#xff1b;分词器可以用ik_smart
  • email&#xff1a;类型为字符串&#xff0c;但是不需要分词&#xff0c;因此是keyword&#xff1b;不参与搜索&#xff0c;因此需要index为false&#xff1b;无需分词器
  • score&#xff1a;虽然是数组&#xff0c;但是我们只看元素的类型&#xff0c;类型为float&#xff1b;参与搜索&#xff0c;因此需要index为true&#xff1b;无需分词器
  • name&#xff1a;类型为object&#xff0c;需要定义多个子属性
    • name.firstName&#xff1b;类型为字符串&#xff0c;但是不需要分词&#xff0c;因此是keyword&#xff1b;参与搜索&#xff0c;因此需要index为true&#xff1b;无需分词器
    • name.lastName&#xff1b;类型为字符串&#xff0c;但是不需要分词&#xff0c;因此是keyword&#xff1b;参与搜索&#xff0c;因此需要index为true&#xff1b;无需分词器

5.2.索引库的CRUD

这里我们统一使用Kibana编写DSL的方式来演示。

5.2.1.创建索引库和映射


基本语法&#xff1a;


  • 请求方式&#xff1a;PUT
  • 请求路径&#xff1a;/索引库名&#xff0c;可以自定义
  • 请求参数&#xff1a;mapping映射

格式&#xff1a;

PUT /索引库名称
{"mappings": {"properties": {"字段名":{"type": "text","analyzer": "ik_smart"},"字段名2":{"type": "keyword","index": "false"},"字段名3":{"properties": {"子字段": {"type": "keyword"}}},// ...略}}
}

示例&#xff1a;

PUT /heima
{"mappings": {"properties": {"info":{"type": "text","analyzer": "ik_smart"},"email":{"type": "keyword","index": "falsae"},"name":{"properties": {"firstName": {"type": "keyword"}}},// ... 略}}
}

5.2.2.查询索引库 get

基本语法&#xff1a;

  • 请求方式&#xff1a;GET

  • 请求路径&#xff1a;/索引库名

  • 请求参数&#xff1a;无

格式&#xff1a;

GET /索引库名

示例&#xff1a;

在这里插入图片描述

5.2.3.修改索引库。put只能添加

倒排索引结构虽然不复杂&#xff0c;但是一旦数据结构改变&#xff08;比如改变了分词器&#xff09;&#xff0c;就需要重新创建倒排索引&#xff0c;这简直是灾难。因此索引库一旦创建&#xff0c;无法修改mapping

虽然无法修改mapping中已有的字段&#xff0c;但是却允许添加新的字段到mapping中&#xff0c;因为不会对倒排索引产生影响。

语法说明&#xff1a;

PUT /索引库名/_mapping
{"properties": {"新字段名":{"type": "integer"}}
}

示例&#xff1a;

在这里插入图片描述

5.2.4.删除索引库delete

语法&#xff1a;

  • 请求方式&#xff1a;DELETE

  • 请求路径&#xff1a;/索引库名

  • 请求参数&#xff1a;无

格式&#xff1a;

DELETE /索引库名

在kibana中测试&#xff1a; 在这里插入图片描述

5.2.5.总结

索引库操作有哪些&#xff1f;

  • 创建索引库&#xff1a;PUT /索引库名
  • 查询索引库&#xff1a;GET /索引库名
  • 删除索引库&#xff1a;DELETE /索引库名
  • 添加字段&#xff1a;PUT /索引库名/_mapping

六.文档操作

6.1.新增文档

语法&#xff1a;

POST /索引库名/_doc/文档id
{"字段1": "值1","字段2": "值2","字段3": {"子属性1": "值3","子属性2": "值4"},// ...
}

示例&#xff1a;

POST /heima/_doc/1
{"info": "黑马程序员Java讲师","email": "zy&#64;itcast.cn","name": {"firstName": "云","lastName": "赵"}
}

响应&#xff1a;

在这里插入图片描述

6.2.查询文档

根据rest风格&#xff0c;新增是post&#xff0c;查询应该是get&#xff0c;不过查询一般都需要条件&#xff0c;这里我们把文档id带上。

语法&#xff1a;

GET /{索引库名称}/_doc/{id}

通过kibana查看数据&#xff1a;

GET /heima/_doc/1

查看结果&#xff1a;

在这里插入图片描述

6.3.删除文档

删除使用DELETE请求&#xff0c;同样&#xff0c;需要根据id进行删除&#xff1a;

语法&#xff1a;

DELETE /{索引库名}/_doc/id值

示例&#xff1a;

# 根据id删除数据
DELETE /heima/_doc/1

结果&#xff1a;

![在这里插入图片描述](https://img-blog.csdnimg.cn/3726859ea41e43f388633f33d6b88d9e.png)

6.4.修改文档

修改有两种方式&#xff1a;

  • 全量修改&#xff1a;直接覆盖原来的文档
  • 增量修改&#xff1a;修改文档中的部分字段

6.4.1.全量修改

全量修改是覆盖原来的文档&#xff0c;其本质是&#xff1a;

  • 根据指定的id删除文档
  • 新增一个相同id的文档

注意&#xff1a;如果根据id删除时&#xff0c;id不存在&#xff0c;第二步的新增也会执行&#xff0c;也就从修改变成了新增操作了。

语法&#xff1a;

PUT /{索引库名}/_doc/文档id
{"字段1": "值1","字段2": "值2",// ... 略
}

示例&#xff1a;

PUT /heima/_doc/1
{"info": "黑马程序员高级Java讲师","email": "zy&#64;itcast.cn","name": {"firstName": "云","lastName": "赵"}
}

6.4.2.增量修改

增量修改是只修改指定id匹配的文档中的部分字段。

语法&#xff1a;

POST /{索引库名}/_update/文档id
{"doc": {"字段名": "新的值",}
}

示例&#xff1a;

POST /heima/_update/1
{"doc": {"email": "ZhaoYun&#64;itcast.cn"}
}

6.5.总结

文档操作有哪些&#xff1f;

  • 创建文档&#xff1a;POST /{索引库名}/_doc/文档id { json文档 }
  • 查询文档&#xff1a;GET /{索引库名}/_doc/文档id
  • 删除文档&#xff1a;DELETE /{索引库名}/_doc/文档id
  • 修改文档&#xff1a;
    • 全量修改&#xff1a;PUT /{索引库名}/_doc/文档id { json文档 }
    • 增量修改&#xff1a;POST /{索引库名}/_update/文档id { “doc”: {字段}}

推荐阅读
  • 秒建一个后台管理系统?用这5个开源免费的Java项目就够了
    秒建一个后台管理系统?用这5个开源免费的Java项目就够了 ... [详细]
  • 在开发过程中,我最初也依赖于功能全面但操作繁琐的集成开发环境(IDE),如Borland Delphi 和 Microsoft Visual Studio。然而,随着对高效开发的追求,我逐渐转向了更加轻量级和灵活的工具组合。通过 CLIfe,我构建了一个高度定制化的开发环境,不仅提高了代码编写效率,还简化了项目管理流程。这一配置结合了多种强大的命令行工具和插件,使我在日常开发中能够更加得心应手。 ... [详细]
  • 提升 Kubernetes 集群管理效率的七大专业工具
    Kubernetes 在云原生环境中的应用日益广泛,然而集群管理的复杂性也随之增加。为了提高管理效率,本文推荐了七款专业工具,这些工具不仅能够简化日常操作,还能提升系统的稳定性和安全性。从自动化部署到监控和故障排查,这些工具覆盖了集群管理的各个方面,帮助管理员更好地应对挑战。 ... [详细]
  • 本文探讨了使用Python进行微服务架构设计的合理性和适用性。首先,介绍了微服务的基本概念及其在现代软件开发中的重要性。接着,通过具体的业务场景,详细分析了Python在微服务架构设计中的优势和挑战。文章还讨论了在实际应用中可能遇到的问题,并提出了相应的解决方案。希望本文能够为从事Python微服务开发的技术人员提供有价值的参考和指导。 ... [详细]
  • 大家好,全新的技术专栏《从零开始掌握容器云网络实战》正式上线。该专栏将系统地介绍容器云网络的基础知识、核心技术和实际应用案例,帮助读者全面理解和掌握容器云网络的关键技术与实践方法。 ... [详细]
  • 大家好,我是李白。本文将分享一个从零开始的全栈项目,涵盖了设计、前端、后端和服务端的全面学习过程。通过这个项目,我希望能够帮助初学者更好地理解和掌握全栈开发的技术栈。 ... [详细]
  • 本文介绍了如何利用HTTP隧道技术在受限网络环境中绕过IDS和防火墙等安全设备,实现RDP端口的暴力破解攻击。文章详细描述了部署过程、攻击实施及流量分析,旨在提升网络安全意识。 ... [详细]
  • 在JavaWeb开发中,文件上传是一个常见的需求。无论是通过表单还是其他方式上传文件,都必须使用POST请求。前端部分通常采用HTML表单来实现文件选择和提交功能。后端则利用Apache Commons FileUpload库来处理上传的文件,该库提供了强大的文件解析和存储能力,能够高效地处理各种文件类型。此外,为了提高系统的安全性和稳定性,还需要对上传文件的大小、格式等进行严格的校验和限制。 ... [详细]
  • 大类|电阻器_使用Requests、Etree、BeautifulSoup、Pandas和Path库进行数据抓取与处理 | 将指定区域内容保存为HTML和Excel格式
    大类|电阻器_使用Requests、Etree、BeautifulSoup、Pandas和Path库进行数据抓取与处理 | 将指定区域内容保存为HTML和Excel格式 ... [详细]
  • 在《Cocos2d-x学习笔记:基础概念解析与内存管理机制深入探讨》中,详细介绍了Cocos2d-x的基础概念,并深入分析了其内存管理机制。特别是针对Boost库引入的智能指针管理方法进行了详细的讲解,例如在处理鱼的运动过程中,可以通过编写自定义函数来动态计算角度变化,利用CallFunc回调机制实现高效的游戏逻辑控制。此外,文章还探讨了如何通过智能指针优化资源管理和避免内存泄漏,为开发者提供了实用的编程技巧和最佳实践。 ... [详细]
  • 如何使用 `org.apache.tomcat.websocket.server.WsServerContainer.findMapping()` 方法及其代码示例解析 ... [详细]
  • 体积小巧的vsftpd与pureftpd Docker镜像在Unraid系统中的详细配置指南:支持TLS加密及IPv6协议
    本文详细介绍了如何在Unraid系统中配置体积小巧的vsftpd和Pure-FTPd Docker镜像,以支持TLS加密和IPv6协议。通过这些配置,用户可以实现安全、高效的文件传输服务,适用于各种网络环境。配置过程包括镜像的选择、环境变量的设置以及必要的安全措施,确保了系统的稳定性和数据的安全性。 ... [详细]
  • 本文介绍了如何在 Windows 系统上利用 Docker 构建一个包含 NGINX、PHP、MySQL、Redis 和 Elasticsearch 的集成开发环境。通过详细的步骤说明,帮助开发者快速搭建和配置这一复杂的技术栈,提升开发效率和环境一致性。 ... [详细]
  • Docker入门指南:初探容器化技术
    Docker入门指南:初探容器化技术摘要:Docker 是一个使用 Go 语言开发的开源容器平台,旨在实现应用程序的构建、分发和运行的标准化。通过将应用及其依赖打包成轻量级的容器,Docker 能够确保应用在任何环境中都能一致地运行,从而提高开发和部署的效率。本文将详细介绍 Docker 的基本概念、核心功能以及如何快速上手使用这一强大的容器化工具。 ... [详细]
  • Docker镜像加载优化:开发者的高效实践指南
    Docker镜像加载优化:开发者的高效实践指南 ... [详细]
author-avatar
PHP1.CN | 中国最专业的PHP中文社区 | DevBox开发工具箱 | json解析格式化 |PHP资讯 | PHP教程 | 数据库技术 | 服务器技术 | 前端开发技术 | PHP框架 | 开发工具 | 在线工具
Copyright © 1998 - 2020 PHP1.CN. All Rights Reserved | 京公网安备 11010802041100号 | 京ICP备19059560号-4 | PHP1.CN 第一PHP社区 版权所有