热门标签 | HotTags
当前位置:  开发笔记 > 编程语言 > 正文

Python利用PaddleOCR制作个搜题小工具

PaddleOCR是一个基于百度飞桨的OCR工具库,单模型支持中英文数字组合识别、竖排文本识别、长文本识别。本文将利用PaddleOCR开发一个搜题小工具,感兴趣的可以了解一下

介绍

PaddleOCR 是一个基于百度飞桨的OCR工具库,包含总模型仅8.6M的超轻量级中文OCR,单模型支持中英文数字组合识别、竖排文本识别、长文本识别。同时支持多种文本检测、文本识别的训练算法。

本教程将介绍PaddleOCR的基本使用方法以及如何使用它开发一个自动搜题的小工具。

项目地址

OR

安装

虽然PaddleOCR支持服务端部署并提供识别API,但根据我们的需求,搭建一个本地离线的OCR识别环境,所以此次我们只介绍如何在本地安装并使用的做法。

安装PaddlePaddle飞桨框架

一、环境准备

1.1 目前飞桨支持的环境

Windows 7/8/10 专业版/企业版 (64bit)

GPU版本支持CUDA 10.1/10.2/11.0/11.2,且仅支持单卡

Python 版本 3.6+/3.7+/3.8+/3.9+ (64 bit)

pip 版本 20.2.2或更高版本 (64 bit)

二、安装命令

pip install paddlepaddle -i https://mirror.baidu.com/pypi/simple

(注意此版本为CPU版本,如需GPU版本请查看PaddlePaddle文档)

安装完成后您可以使用 python 进入python解释器,输入import paddle ,再输入 paddle.utils.run_check()

如果出现PaddlePaddle is installed successfully!,说明您已成功安装。

安装PaddleOCR

pip install "paddleocr>=2.0.1" # 推荐使用2.0.1+版本

代码使用

安装完成后你可以使用以下代码来进行简单的功能测试

from paddleocr import PaddleOCR, draw_ocr

# Paddleocr目前支持中英文、英文、法语、德语、韩语、日语,可以通过修改lang参数进行切换
# 参数依次为`ch`, `en`, `french`, `german`, `korean`, `japan`。
ocr = PaddleOCR(use_angle_cls=True, lang="ch")  # need to run only once to download and load model into memory
# 选择你要识别的图片路径
img_path = '11.jpg'
result = ocr.ocr(img_path, cls=True)
for line in result:
    print(line)

# 显示结果
from PIL import Image

image = Image.open(img_path).convert('RGB')
boxes = [line[0] for line in result]
txts = [line[1][0] for line in result]
scores = [line[1][1] for line in result]
im_show = draw_ocr(image, boxes, txts, scores, font_path='/path/to/PaddleOCR/doc/fonts/simfang.ttf')
im_show = Image.fromarray(im_show)
im_show.save('result.jpg')

结果是一个list,每个item包含了文本框,文字和识别置信度

[[[24.0, 36.0], [304.0, 34.0], [304.0, 72.0], [24.0, 74.0]], ['纯臻营养护发素', 0.964739]]
[[[24.0, 80.0], [172.0, 80.0], [172.0, 104.0], [24.0, 104.0]], ['产品信息/参数', 0.98069626]]
[[[24.0, 109.0], [333.0, 109.0], [333.0, 136.0], [24.0, 136.0]], ['(45元/每公斤,100公斤起订)', 0.9676722]]
......

可视化效果

至此我们就掌握了 PaddleOCR 的基本使用,基于这个我们就能开发出一个OCR的搜题小工具了。

更多使用方法请参考

搜题小工具

现在有很多那种答题竞赛的小游戏,在限定时间内看谁答题正确率更高。或者现在一些单位会搞一些大练兵什么的竞赛,需要在网上答题,这个时候手动输入题目去搜索就很慢,效率也不会太高,所以我们就可以来写一个脚本,帮助我们完成搜题的过程。

基本思路就是通过ADB截取当前屏幕,然后剪切出题目所在位置,然后通过PaddleOCR来获取题目文字,之后打开搜索引擎搜索或者打开题库搜索。

安装ADB

你可以到这里下载安装ADB之后配置环境变量。

配置完环境变量后在终端输入adb,如果出现以下字符则证明adb安装完成。

Android Debug Bridge version 1.0.41
Version 31.0.3-7562133

截图并保存题目区域图片

import os
from PIL import Image

# 截图
def pull_screenshot():
    os.system('adb shell screencap -p /sdcard/screenshot.png')
    os.system('adb pull /sdcard/screenshot.png .')

img = Image.open("./screenshot.png")
# 切割问题区域
# (起始点的横坐标,起始点的纵坐标,宽度,高度)
question  = img.crop((10, 400, 1060, 1000))
# 保存问题区域
question.save("./question.png")

OCR识别,获取题目

ocr = PaddleOCR(use_angle_cls=False, 
                        lang="ch", 
                        show_log=False
                        )  # need to run only once to download and load model into memory
img_path = 'question.png'
result = ocr.ocr(img_path, cls=False)

# 获取题目文本
questiOnList= [line[1][0] for line in result]
text = ""
# 将数组转换为字符串
for str in questionList :
    text += str
print(text)

打开浏览器搜索

import webbrowser
webbrowser.open('https://baidu.com/s?wd=' + urllib.parse.quote(question))

之后你就可以查看搜索结果了

如果有题库,你还可以使用pyautogui来模拟鼠标键盘操作,去操作Word等软件在题库中进行搜索。

完整代码

# -*- coding: utf-8 -*-

# @Author  : Pu Zhiwei
# @Time    : 2021-09-02 20:29

from PIL import Image
import os
import matplotlib.pyplot as plt
from paddleocr import PaddleOCR, draw_ocr
import pyperclip
import pyautogui
import time
import webbrowser
import urllib.parse


# 鼠标位置
currentMouseX, currentMouseY = 60, 282

# 截图获取当前题目
def pull_screenshot():
    os.system('adb shell screencap -p /sdcard/screenshot.png')
    os.system('adb pull /sdcard/screenshot.png .')

# 移动鼠标到搜索框搜索
def MoveMouseToSearch():
    # duration 参数,移动时间,即用时0.1秒移动到对应位置
    pyautogui.moveTo(currentMouseX, currentMouseY, duration=0.1)
    # 左键点击
    pyautogui.click()
    pyautogui.click()
    # 模拟组合键,粘贴
    pyautogui.hotkey('ctrl', 'v')

# 扩充问题
def AddText(list, length, text):
    if length > 3:
        return text + list[3]
    else:
        return text
# 打开浏览器
def open_webbrowser(question):
    webbrowser.open('https://baidu.com/s?wd=' + urllib.parse.quote(question))


# 显示所识别的题目
def ShowAllQuestionText(list):
    text = ""
    for str in list:
        text += str
    print(text)



if __name__ == "__main__":
    while True:
        print("\n\n请将鼠标放在Word的搜索框上,三秒后脚本将自动获取Word搜索框位置!\n\n")
        # 延时三秒输出鼠标位置
        time.sleep(3)
        # 获取当前鼠标位置
        currentMouseX, currentMouseY = pyautogui.position()
        print('当前鼠标位置为: {0} , {1}'.format(currentMouseX, currentMouseY))
        start = input("按y键程序开始运行,按其他键重新获取搜索框位置:")
        if start == 'y':
            break

    while True:
        t = time.perf_counter()
        pull_screenshot()
        img = Image.open("./screenshot.png")
        # 切割问题区域
        # (起始点的横坐标,起始点的纵坐标,宽度,高度)
        question  = img.crop((10, 400, 1060, 1000))
        # 保存问题区域
        question.save("./question.png")


        # 加载 PaddleOCR
        # Paddleocr目前支持中英文、英文、法语、德语、韩语、日语,可以通过修改lang参数进行切换
        # 参数依次为`ch`, `en`, `french`, `german`, `korean`, `japan`。

        # 自定义模型地址
        # det_model_dir='./inference/ch_ppocr_server_v2.0_det_train', 
        #                rec_model_dir='./inference/ch_ppocr_server_v2.0_rec_pre',
        #                cls_model_dir='./inference/ch_ppocr_mobile_v2.0_cls_train',
        ocr = PaddleOCR(use_angle_cls=False, 
                        lang="ch", 
                        show_log=False
                        )  # need to run only once to download and load model into memory
        img_path = 'question.png'
        result = ocr.ocr(img_path, cls=False)

        questiOnList= [line[1][0] for line in result]
        length = len(questionList)
        text = ""
        if length <1:
            text = questionList[0]
        elif length == 2:
            text = questionList[1]
        else:
            text = questionList[1] + questionList[2]

        print('\n\n')
        ShowAllQuestionText(questionList)
        # 将结果写入剪切板
        pyperclip.copy(text)
        # 点击搜索
        MoveMouseToSearch()
        
        # 计算时间
        print('\n\n')
        end_time3 = time.perf_counter()
        print('用时: {0}'.format(end_time3 - t))
        
        go = input('输入回车继续运行,输入 e 打开浏览器搜索,输入 a 增加题目长度,输入 n 结束程序运行: ')
        if go == 'n':
            break
  
        if go == 'a':
            text = AddText(questionList, length, text)
            pyperclip.copy(text)
            # 点击搜索
            MoveMouseToSearch()
            stop = input("输入回车继续")
        elif go == 'e':
            # 打开浏览器
            open_webbrowser(text)
            stop = input("输入回车继续")

        print('\n------------------------\n\n')

到此这篇关于Python利用PaddleOCR制作个搜题小工具 的文章就介绍到这了,更多相关Python PaddleOCR搜题工具 内容请搜索以前的文章或继续浏览下面的相关文章希望大家以后多多支持!


推荐阅读
  • 计算 n 叉树中各节点子树的叶节点数量分析 ... [详细]
  • 本文详细探讨了Java集合框架的使用方法及其性能特点。首先,通过关系图展示了集合接口之间的层次结构,如`Collection`接口作为对象集合的基础,其下分为`List`、`Set`和`Queue`等子接口。其中,`List`接口支持按插入顺序保存元素且允许重复,而`Set`接口则确保元素唯一性。此外,文章还深入分析了不同集合类在实际应用中的性能表现,为开发者选择合适的集合类型提供了参考依据。 ... [详细]
  • BZOJ4240 Gym 102082G:贪心算法与树状数组的综合应用
    BZOJ4240 Gym 102082G 题目 "有趣的家庭菜园" 结合了贪心算法和树状数组的应用,旨在解决在有限时间和内存限制下高效处理复杂数据结构的问题。通过巧妙地运用贪心策略和树状数组,该题目能够在 10 秒的时间限制和 256MB 的内存限制内,有效处理大量输入数据,实现高性能的解决方案。提交次数为 756 次,成功解决次数为 349 次,体现了该题目的挑战性和实际应用价值。 ... [详细]
  • 本文深入解析了 Apache 配置文件 `httpd.conf` 和 `.htaccess` 的优化方法,探讨了如何通过合理配置提升服务器性能和安全性。文章详细介绍了这两个文件的关键参数及其作用,并提供了实际应用中的最佳实践,帮助读者更好地理解和运用 Apache 配置。 ... [详细]
  • Android 图像色彩处理技术详解
    本文详细探讨了 Android 平台上的图像色彩处理技术,重点介绍了如何通过模仿美图秀秀的交互方式,利用 SeekBar 实现对图片颜色的精细调整。文章展示了具体的布局设计和代码实现,帮助开发者更好地理解和应用图像处理技术。 ... [详细]
  • 本文深入探讨了 MXOTDLL.dll 在 C# 环境中的应用与优化策略。针对近期公司从某生物技术供应商采购的指纹识别设备,该设备提供的 DLL 文件是用 C 语言编写的。为了更好地集成到现有的 C# 系统中,我们对原生的 C 语言 DLL 进行了封装,并利用 C# 的互操作性功能实现了高效调用。此外,文章还详细分析了在实际应用中可能遇到的性能瓶颈,并提出了一系列优化措施,以确保系统的稳定性和高效运行。 ... [详细]
  • 如何将PHP文件上传至服务器及正确配置服务器地址 ... [详细]
  • 在 Android 开发中,通过合理利用系统通知服务,可以显著提升应用的用户交互体验。针对 Android 8.0 及以上版本,开发者需首先创建并注册通知渠道。本文将详细介绍如何在应用中实现这一功能,包括初始化通知管理器、创建通知渠道以及发送通知的具体步骤,帮助开发者更好地理解和应用这些技术细节。 ... [详细]
  • 浅析PHP中$_SERVER[
    在PHP后端开发中,`$_SERVER["HTTP_REFERER"]` 是一个非常有用的超级全局变量,它可以获取用户访问当前页面之前的URL。本文将详细介绍该变量的使用方法及其在不同场景下的应用,如页面跳转跟踪、安全验证和用户行为分析等。通过实例解析,帮助开发者更好地理解和利用这一功能。 ... [详细]
  • 深入解析Gradle中的Project核心组件
    在Gradle构建系统中,`Project` 是一个核心组件,扮演着至关重要的角色。通过使用 `./gradlew projects` 命令,可以清晰地列出当前项目结构中包含的所有子项目,这有助于开发者更好地理解和管理复杂的多模块项目。此外,`Project` 对象还提供了丰富的配置选项和生命周期管理功能,使得构建过程更加灵活高效。 ... [详细]
  • MySQL性能优化与调参指南【数据库管理】
    本文详细探讨了MySQL数据库的性能优化与参数调整技巧,旨在帮助数据库管理员和开发人员提升系统的运行效率。内容涵盖索引优化、查询优化、配置参数调整等方面,结合实际案例进行深入分析,提供实用的操作建议。此外,还介绍了常见的性能监控工具和方法,助力读者全面掌握MySQL性能优化的核心技能。 ... [详细]
  • 利用PaddleSharp模块在C#中实现图像文字识别功能测试
    PaddleSharp 是 PaddleInferenceCAPI 的 C# 封装库,适用于 Windows (x64)、NVIDIA GPU 和 Linux (Ubuntu 20.04) 等平台。本文详细介绍了如何使用 PaddleSharp 在 C# 环境中实现图像文字识别功能,并进行了全面的功能测试,验证了其在多种硬件配置下的稳定性和准确性。 ... [详细]
  • DHCP三层交换机设置方式全局模式和接口模式设置方式和命令resetsave回车输入yreboot输入n输入y重启后就恢复默认设置了默认用户名密码adminAdmin@huawei ... [详细]
  • IIS配置大全:从基础到高级的全面指南
    IIS配置详解:从基础到高级的全面指南IIS前端配置与web.config文件紧密相关,相互影响。本文详细介绍了如何设置允许通过的HTTP请求方法,包括HEAD、POST、GET、TRACE和OPTIONS。提供了两种主要的配置方法,并探讨了它们在实际应用中的优缺点。此外,还深入讲解了其他高级配置选项,帮助读者全面提升IIS服务器的性能和安全性。 ... [详细]
  • 解决Android Bitmap保存过程中背景色异常变黑的技术方案
    在开发一个Android应用时,遇到了一个长期未解决的问题:原本白色的背景在保存Bitmap图片时会变成黑色。经过深入研究,发现这可能与创建Bitmap对象时的默认设置有关。通过调整Bitmap的配置参数,并确保在保存图片时正确处理颜色信息,最终成功解决了这一问题。此外,还对代码进行了优化,以提高图片保存的效率和质量。 ... [详细]
author-avatar
彬彬521521
这个家伙很懒,什么也没留下!
PHP1.CN | 中国最专业的PHP中文社区 | DevBox开发工具箱 | json解析格式化 |PHP资讯 | PHP教程 | 数据库技术 | 服务器技术 | 前端开发技术 | PHP框架 | 开发工具 | 在线工具
Copyright © 1998 - 2020 PHP1.CN. All Rights Reserved | 京公网安备 11010802041100号 | 京ICP备19059560号-4 | PHP1.CN 第一PHP社区 版权所有