热门标签 | HotTags
当前位置:  开发笔记 > 后端 > 正文

UNet详细解读(一)论文技术要点归纳

UNet论文技术要点归纳UNet摘要简介Over-tile策略网络架构训练数据增强小结UNet摘要2015年诞生,获得当年的ISBI细胞追踪挑战比赛第一名ÿ




UNet 论文技术要点归纳


  • UNet
    • 摘要
    • 简介
    • Over-tile策略
    • 网络架构
    • 训练
    • 数据增强
    • 小结




UNet

摘要



2015年诞生,获得当年的ISBI细胞追踪挑战比赛第一名,在GPU上推理512x512的图像不到1秒钟,开创图像分割的先河。



简介



在当时,卷积神经网络是主流,但是仅限于图像分类任务,并且需要大量的数据集。对于医学图像,数据集的量很少。


2012年 Ciresan提出的网络虽然获得了EM的第一名,但是有缺陷,因此作者提出了UNet,解决了这些问题。并且远远超出了之前的所有分割网络。



Over-tile策略

请添加图片描述



对图中黄色部分像素点进行预测的时候,需要用到蓝色部分的上下文信息,但是这么做会出现两个问题。


1.边界问题:进行镜像扩充。


2.重叠问题:在卷积时只使用有效部分,在卷积的时候会使用到蓝色部分,但是传入到下一层的只有黄色部分。



网络架构

请添加图片描述



左侧为收缩路径,由3X3卷积Relu最大池化组成,每次下采样后通道数量加倍,用于获取上下文信息。


右侧为扩展路径,由3X3卷积Relu2X2上采样组成,每次下采样后通道数量减半,用于精确定位。




  • 输入是572x572的,但是输出变成了388x388,这说明经过网络以后,输出的结果和原图不是完全对应的,这在计算loss和输出结果都可以得到体现.

  • 蓝色箭头代表3x3的卷积操作,并且步长是1,不进行padding,因此,每个该操作以后,featuremap的大小会减2.

  • 红色箭头代表2x2的最大池化操作.如果池化之前特征向量的大小是奇数,那么就会损失一些信息 。输入的大小最好满足一个条件,就是可以让每一层池化操作前的特征向量的大小是偶数,这样就不会损失一些信息,并且crop的时候不会产生误差.

  • 绿色箭头代表2x2的反卷积操作.何为反卷积会在后面进行记录

  • 灰色箭头表示复制和剪切操作.

  • 输出的最后一层,使用了1x1的卷积层做了分类

  • 前半部分也就是图中左边部分的作用是特征提取,后半部分也就是图中的右边部分是上采样,也叫 encoder-deconder结构



训练



采用SGD优化器,动量设置为0.99,使用单张图片训练,使用了加权重的softmax损失函数,使得每个像素有自己的权重,也就是做了w*h个softmax。


请添加图片描述


数据增强



主要使用了旋转平移不变性、弹性形变和dropout。



小结



Unet是一个分割网络,主要提出了两个策略:


第一个是overlap-tile策略,解决了边缘区域没有上下文的问题;


第二个是使用了加权损失以使得网络更加重视边缘像素的学习。








推荐阅读
  • 浪潮AI服务器NF5488A5在MLPerf基准测试中刷新多项纪录
    近日,国际权威AI基准测试平台MLPerf发布了最新的推理测试结果,浪潮AI服务器NF5488A5在此次测试中创造了18项性能纪录,显著提升了数据中心AI推理性能。 ... [详细]
  • NVIDIA Titan RTX深度评测
    NVIDIA的Titan RTX被誉为当前最强大的桌面显卡之一,其卓越的性能和高昂的价格吸引了众多专业人士和技术爱好者的关注。本文将详细介绍Titan RTX的技术规格、性能表现及应用场景。 ... [详细]
  • 数据管理权威指南:《DAMA-DMBOK2 数据管理知识体系》
    本书提供了全面的数据管理职能、术语和最佳实践方法的标准行业解释,构建了数据管理的总体框架,为数据管理的发展奠定了坚实的理论基础。适合各类数据管理专业人士和相关领域的从业人员。 ... [详细]
  • 毕业设计:基于机器学习与深度学习的垃圾邮件(短信)分类算法实现
    本文详细介绍了如何使用机器学习和深度学习技术对垃圾邮件和短信进行分类。内容涵盖从数据集介绍、预处理、特征提取到模型训练与评估的完整流程,并提供了具体的代码示例和实验结果。 ... [详细]
  • 探索电路与系统的起源与发展
    本文回顾了电路与系统的发展历程,从电的早期发现到现代电子器件的应用。文章不仅涵盖了基础理论和关键发明,还探讨了这一学科对计算机、人工智能及物联网等领域的深远影响。 ... [详细]
  • 尽管深度学习带来了广泛的应用前景,其训练通常需要强大的计算资源。然而,并非所有开发者都能负担得起高性能服务器或专用硬件。本文探讨了如何在有限的硬件条件下(如ARM CPU)高效运行深度神经网络,特别是通过选择合适的工具和框架来加速模型推理。 ... [详细]
  • 机器学习核心概念与技术
    本文系统梳理了机器学习的关键知识点,涵盖模型评估、正则化、线性模型、支持向量机、决策树及集成学习等内容,并深入探讨了各算法的原理和应用场景。 ... [详细]
  • 本文将详细介绍多个流行的 Android 视频处理开源框架,包括 ijkplayer、FFmpeg、Vitamio、ExoPlayer 等。每个框架都有其独特的优势和应用场景,帮助开发者更高效地进行视频处理和播放。 ... [详细]
  • 三星Galaxy S8/S8+即将登场,全面解析新旗舰
    3月29日晚11点,备受瞩目的三星Galaxy S8/S8+将正式发布。作为三星在Note 7爆炸事件后的重磅产品,S8/S8+不仅承载着恢复消费者信心的重任,其创新的设计和技术也备受期待。 ... [详细]
  • 本文探讨了亚马逊Go如何通过技术创新推动零售业的发展,以及面临的市场和隐私挑战。同时,介绍了亚马逊最新的‘刷手支付’技术及其潜在影响。 ... [详细]
  • 基于2-channelnetwork的图片相似度判别一、相关理论本篇博文主要讲解2015年CVPR的一篇关于图像相似度计算的文章:《LearningtoCompar ... [详细]
  • 随着技术的发展,黑客开始利用AI技术在暗网中创建用户的‘数字孪生’,这一现象引起了安全专家的高度关注。 ... [详细]
  • 本文详细介绍了Java编程语言中的核心概念和常见面试问题,包括集合类、数据结构、线程处理、Java虚拟机(JVM)、HTTP协议以及Git操作等方面的内容。通过深入分析每个主题,帮助读者更好地理解Java的关键特性和最佳实践。 ... [详细]
  • 新手指南:在Windows 10上搭建深度学习与PyTorch开发环境
    本文详细记录了一名新手在Windows 10操作系统上搭建深度学习环境的过程,包括安装必要的软件和配置环境变量等步骤,旨在帮助同样初入该领域的读者避免常见的错误。 ... [详细]
  • 2017年人工智能领域的十大里程碑事件回顾
    随着2018年的临近,我们一同回顾过去一年中人工智能领域的重要进展。这一年,无论是政策层面的支持,还是技术上的突破,都显示了人工智能发展的迅猛势头。以下是精选的2017年人工智能领域最具影响力的事件。 ... [详细]
author-avatar
情非不得以1_810
这个家伙很懒,什么也没留下!
PHP1.CN | 中国最专业的PHP中文社区 | DevBox开发工具箱 | json解析格式化 |PHP资讯 | PHP教程 | 数据库技术 | 服务器技术 | 前端开发技术 | PHP框架 | 开发工具 | 在线工具
Copyright © 1998 - 2020 PHP1.CN. All Rights Reserved | 京公网安备 11010802041100号 | 京ICP备19059560号-4 | PHP1.CN 第一PHP社区 版权所有