热门标签 | HotTags
当前位置:  开发笔记 > 编程语言 > 正文

图像语义分割(4)SegNet:深度全卷积编解码结构

论文地址:SegNet:ADeepConvolutionalEncoder-DecoderArchitectureforImageSegmentation论文实现&#

论文地址:
SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation
论文实现: github代码


1. 概述


1.1 解决的问题


  • 图像语义分割中max pooling等Subpooling方法缩小了特征图尺寸,导致信息丢失
  • 图像分割模型的主要结构(编解码)

1.2 提出新方法


  • Encoder—Decoder
  • 新的上采样方式unpool with indices

1.3 得到的效果


  • 精度上与FCN相差不大,而且Deconv方法效果更好
  • 在存储和时间效率上SegNet效果大大改善,这也对应了SegNet的初衷,道路物体语义信息理解(自动驾驶)

2.模型关键架构

在这里插入图片描述


2.1 Encoder-Decoder架构

  FCN语义分割网络中的编解码结构如下:


  • Encoder:使用pool操作和卷积操作,特征图尺寸缩小,通道数增加 →\rightarrow SubSample
  • Decoder: 使用Deconv特征图尺寸增加→\rightarrow UpSample
      在SegNet中做了如下改进:
  • Encoder:VGG网络直接去掉三层全连接层,模型参数大幅度减小,模型规模大幅下降。每一次卷积后加依次Batch Normalization。
  • Decoder:每一个Encoder对应一个Decoder并提出新的upSample方式,unpool with indices

2.2 Unpool 反池化上采样方式

  记录下maxPooling在对应Kerner的坐标,反池化过程中,将一个元素根据Kernerl放大,其他位置元素补0,如下图所示:
在这里插入图片描述


推荐阅读
  • 图像分割技术在人工智能领域中扮演着关键角色,其中语义分割、实例分割和全景分割是三种主要的方法。本文对这三种分割技术进行了详细的对比分析,探讨了它们在不同应用场景中的优缺点和适用范围,为研究人员和从业者提供了有价值的参考。 ... [详细]
  • 能够感知你情绪状态的智能机器人即将问世 | 科技前沿观察
    本周科技前沿报道了多项重要进展,包括美国多所高校在机器人技术和自动驾驶领域的最新研究成果,以及硅谷大型企业在智能硬件和深度学习技术上的突破性进展。特别值得一提的是,一款能够感知用户情绪状态的智能机器人即将问世,为未来的人机交互带来了全新的可能性。 ... [详细]
  • Presto:高效即席查询引擎的深度解析与应用
    本文深入解析了Presto这一高效的即席查询引擎,详细探讨了其架构设计及其优缺点。Presto通过内存到内存的数据处理方式,显著提升了查询性能,相比传统的MapReduce查询,不仅减少了数据传输的延迟,还提高了查询的准确性和效率。然而,Presto在大规模数据处理和容错机制方面仍存在一定的局限性。本文还介绍了Presto在实际应用中的多种场景,展示了其在大数据分析领域的强大潜力。 ... [详细]
  • 最详尽的4K技术科普
    什么是4K?4K是一个分辨率的范畴,即40962160的像素分辨率,一般用于专业设备居多,目前家庭用的设备,如 ... [详细]
  • 从0到1搭建大数据平台
    从0到1搭建大数据平台 ... [详细]
  • 在2019中国国际智能产业博览会上,百度董事长兼CEO李彦宏强调,人工智能应务实推进其在各行业的应用。随后,在“ABC SUMMIT 2019百度云智峰会”上,百度展示了通过“云+AI”推动AI工业化和产业智能化的最新成果。 ... [详细]
  • 如何将TS文件转换为M3U8直播流:HLS与M3U8格式详解
    在视频传输领域,MP4虽然常见,但在直播场景中直接使用MP4格式存在诸多问题。例如,MP4文件的头部信息(如ftyp、moov)较大,导致初始加载时间较长,影响用户体验。相比之下,HLS(HTTP Live Streaming)协议及其M3U8格式更具优势。HLS通过将视频切分成多个小片段,并生成一个M3U8播放列表文件,实现低延迟和高稳定性。本文详细介绍了如何将TS文件转换为M3U8直播流,包括技术原理和具体操作步骤,帮助读者更好地理解和应用这一技术。 ... [详细]
  • 独家解析:深度学习泛化理论的破解之道与应用前景
    本文深入探讨了深度学习泛化理论的关键问题,通过分析现有研究和实践经验,揭示了泛化性能背后的核心机制。文章详细解析了泛化能力的影响因素,并提出了改进模型泛化性能的有效策略。此外,还展望了这些理论在实际应用中的广阔前景,为未来的研究和开发提供了宝贵的参考。 ... [详细]
  • 汽车电子架构与CAN网络基础解析——鉴源实验室专业解读 ... [详细]
  • 全球计算机视觉顶会CVPR2018(ConferenceonComputerVisionandPatternRecognition,即IEEE国际计算机 ... [详细]
  • 本文介绍了如何在 macOS 上安装 HL-340 USB 转串口驱动,并提供了详细的步骤和注意事项。包括下载驱动、关闭系统完整性保护、安装驱动以及验证安装的方法。 ... [详细]
  • 技术分享:使用 Flask、AngularJS 和 Jinja2 构建高效前后端交互系统
    技术分享:使用 Flask、AngularJS 和 Jinja2 构建高效前后端交互系统 ... [详细]
  • PTArchiver工作原理详解与应用分析
    PTArchiver工作原理及其应用分析本文详细解析了PTArchiver的工作机制,探讨了其在数据归档和管理中的应用。PTArchiver通过高效的压缩算法和灵活的存储策略,实现了对大规模数据的高效管理和长期保存。文章还介绍了其在企业级数据备份、历史数据迁移等场景中的实际应用案例,为用户提供了实用的操作建议和技术支持。 ... [详细]
  • 本文详细探讨了二元Probit模型及其在实际应用中的重要性。作为一种广义线性模型,Probit模型主要用于处理二分类问题,与Logistic模型类似,但其假设误差项服从标准正态分布。尽管Probit模型在某些领域应用较少,但在特定情境下仍具有独特优势。文章不仅介绍了模型的基本原理,还通过实例分析展示了其在经济学、社会学等领域的具体应用。 ... [详细]
  • OpenAI首席执行官Sam Altman展望:人工智能的未来发展方向与挑战
    OpenAI首席执行官Sam Altman展望:人工智能的未来发展方向与挑战 ... [详细]
author-avatar
游走的小张
这个家伙很懒,什么也没留下!
PHP1.CN | 中国最专业的PHP中文社区 | DevBox开发工具箱 | json解析格式化 |PHP资讯 | PHP教程 | 数据库技术 | 服务器技术 | 前端开发技术 | PHP框架 | 开发工具 | 在线工具
Copyright © 1998 - 2020 PHP1.CN. All Rights Reserved | 京公网安备 11010802041100号 | 京ICP备19059560号-4 | PHP1.CN 第一PHP社区 版权所有