热门标签 | HotTags
当前位置:  开发笔记 > 编程语言 > 正文

图论概述

图的基本概念:有向图和无向图G(V,E),顶点集合V(G),边集合E(G),基图,完全图,有向完全图,稀疏图,稠密图,度数,出度,入度,最小度,最大度,度序列,二部图(二分图),完

图的基本概念:有向图和无向图G(V,E),顶点集合V(G),边集合E(G),基图,完全图,有向完全图,稀疏图,稠密图,度数,出度,入度,最小度,最大度,度序列,二部图(二分图),完全二部图,同构,子图,生成树,路径,简单路径,回路,简单回路,连通,连通分量,权值,加权图,顶点数组,邻接矩阵。

序列是可图的:一个由非负整数组成的有限序列如果是某个无向图的度序列,则称该序列是可图的,判断一个序列是否可图,可以使用下述Havel-Hakimi定理。

字图: 设有两个图G(V,E)和G‘(V‘,E‘), 如果V‘包含于V, E‘包含于E, 则称图G‘是图G的子图(subgraph).

生成树(Spanning Tree): 一个无向连通图的生成树是它的包含所有顶点的极小连通子图。这里的极小就是边的数目极小。如果图中有n个顶点,则生成树有n-1条边。一个无向连通图可能有多个生成树。

Havel-Hakimi定理:由非负整数组成的非增序列s:d1, d2, ......,dn(n>=2, d1>=1)是可图的,当且仅当序列 s1:d2-1, d3-1, ......, d(d1+1)-1, d(d1+2),......, dn是可图的。序列s1中有n-1个非负整数,s序列中d1后的前d1个度数(即d2~d(n+1))减1后构成s1中的前d1个数。

Havel-Hakimi定理实际上给出了根据一个序列s构造图的方法。

最常碰见的问题:

(1) 输入一个有向图的顶点数和顶点之间的连接情况,输出该图所有顶点v的出度和入度。

(2)输入一个度数序列,判断是否存在相连的可能性,若存在,用邻接矩阵表示点与点之间的相连关系。

图论概述


推荐阅读
  • 本文详细介绍了C++中的构造函数,包括其定义、特点以及如何通过构造函数进行对象的初始化。此外,还探讨了转换构造函数的概念及其在不同情境下的应用,以及如何避免不必要的隐式类型转换。 ... [详细]
  • 本文探讨了一种常见的C++面试题目——实现自己的String类。通过此过程,不仅能够检验开发者对C++基础知识的掌握程度,还能加深对其高级特性的理解。文章详细介绍了如何实现基本的功能,如构造函数、析构函数、拷贝构造函数及赋值运算符重载等。 ... [详细]
  • 随着Linux操作系统的广泛使用,确保用户账户及系统安全变得尤为重要。用户密码的复杂性直接关系到系统的整体安全性。本文将详细介绍如何在CentOS服务器上自定义密码规则,以增强系统的安全性。 ... [详细]
  • 3DSMAX制作超现实的体育馆模型
    这篇教程是向脚本之家的朋友介绍3DSMAX制作超现实的体育馆模型方法,教程制作出来的体育馆模型非常地不错,不过教程有点难度,需要有一定基础的朋友学习,推荐到脚本之家,喜欢的朋友可 ... [详细]
  • 本文介绍了如何在AngularJS应用中使用ng-repeat指令创建可单独点击选中的列表项,并详细描述了实现这一功能的具体步骤和代码示例。 ... [详细]
  • 在项目冲刺的最后一天,团队专注于软件用户界面的细节优化,包括调整控件布局和字体设置,以确保界面的简洁性和用户友好性。 ... [详细]
  • JavaScript 页面卸载事件详解 (onunload)
    当用户从页面离开时(如关闭页面或刷新页面),会触发 onunload 事件,此时可以执行预设的脚本。需要注意的是,不同的浏览器对 onunload 事件的支持程度可能有所不同。 ... [详细]
  • 默认情况下,Git 使用 Nano 编辑器进行提交信息的编辑,但如果您更喜欢使用 Vim,可以通过简单的配置更改来实现这一变化。本文将指导您如何通过修改全局配置文件来设置 Vim 作为默认的 Git 提交编辑器。 ... [详细]
  • 探索Java 11中的ZGC垃圾收集器
    Java 11引入了一种新的垃圾收集器——ZGC,由Oracle公司研发,旨在支持TB级别的内存容量,并保证极低的暂停时间。本文将探讨ZGC的开发背景、技术特点及其潜在的应用前景。 ... [详细]
  • 本文介绍了SIP(Session Initiation Protocol,会话发起协议)的基本概念、功能、消息格式及其实现机制。SIP是一种在IP网络上用于建立、管理和终止多媒体通信会话的应用层协议。 ... [详细]
  • 二维码的实现与应用
    本文介绍了二维码的基本概念、分类及其优缺点,并详细描述了如何使用Java编程语言结合第三方库(如ZXing和qrcode.jar)来实现二维码的生成与解析。 ... [详细]
  • 在日常生活中,支付宝已成为不可或缺的支付工具之一。本文将详细介绍如何通过支付宝实现免费提现,帮助用户更好地管理个人财务,避免不必要的手续费支出。 ... [详细]
  • 我的读书清单(持续更新)201705311.《一千零一夜》2006(四五年级)2.《中华上下五千年》2008(初一)3.《鲁滨孙漂流记》2008(初二)4.《钢铁是怎样炼成的》20 ... [详细]
  • 本文介绍了如何通过C#语言调用动态链接库(DLL)中的函数来实现IC卡的基本操作,包括初始化设备、设置密码模式、获取设备状态等,并详细展示了将TextBox中的数据写入IC卡的具体实现方法。 ... [详细]
  • 数据类型--char一、char1.1char占用2个字节char取值范围:【0~65535】char采用unicode编码方式char类型的字面量用单引号括起来char可以存储一 ... [详细]
author-avatar
MichaelZhu
互联网初创企业,海外项目
PHP1.CN | 中国最专业的PHP中文社区 | DevBox开发工具箱 | json解析格式化 |PHP资讯 | PHP教程 | 数据库技术 | 服务器技术 | 前端开发技术 | PHP框架 | 开发工具 | 在线工具
Copyright © 1998 - 2020 PHP1.CN. All Rights Reserved | 京公网安备 11010802041100号 | 京ICP备19059560号-4 | PHP1.CN 第一PHP社区 版权所有