热门标签 | HotTags
当前位置:  开发笔记 > 编程语言 > 正文

【题解】AHOI2009同类分布

好开心呀~果然只有不看题解做出来的题目才会真正的有一种骄傲与满足吧ヾ(๑╹◡╹)ノ实际上这题只要顺藤摸瓜就可以了。首先按照数位dp的套路,有两维想必是省不掉:1.当前dp到到的位数;2.

  好开心呀~果然只有不看题解做出来的题目才会真正的有一种骄傲与满足吧ヾ(๑╹◡╹)ノ"

  实际上这题只要顺藤摸瓜就可以了。首先按照数位dp的套路,有两维想必是省不掉:1.当前dp到到的位数;2.0/1状态表示是否受限制(这一条是因为有数字上限)。然后根据这两个维度来接着往下想。第二个维度先撇开不看,我们只考虑如何从第 \(i - 1\) 位dp到第 \(i\) 位。在这里其实卡了有点久,因为如果除数与被除数都在改变,那么两维的转移是非常凉凉的。

  这个时候联想题目的特殊性质 ----- 当感觉无法优化转移 / 转移方式的时候,考虑状态的重新设计 & 题目的特别要求。然后很开心的发现:\(1e18\) 实际上各位数字的和最大都只有 \(162\)。那么岂不是乱搞也可以?所以我们固定除数 \(Q\) 为 \(\left ( 1, 162 \right )\) 当中的任意一个数,分别进行dp即可。此时的转移就简单了,因为除数固定,自然地追加一维表示余数。状态固定为 \(f[i][j][k][L]\),表示dp到第 \(i\) 位,要求第 \(\left ( 1, i \right )\) 位的数字之和加起来为 \(j\),且原数除以 \(Q\) 的余数为 \(k\),限制为\(L\left ( 0, 1 \right )\)的总个数。

  感觉这份代码写的还行,跑得也还行……能看。

#include 
using namespace std;
#define int long long
int a[20], Res, mul[20];
int f[20][165][165][2];

int read()
{
    int x = 0, k = 1;
    char c;
    c = getchar();
    while(c <'0' || c > '9') { if(c == '-') k = -1; c = getchar(); }
    while(c >= '0' && c <= '9') x = x * 10 + c - '0', c = getchar();
    return x * k;
}

#define Pre f[now][tot][rm][lim]
int DP(int now, int tot, int rm, bool lim)
{
    if(~Pre) return Pre;
    else Pre = 0;
    if(tot > now * 9) return 0;
    if(now == 1) 
    {
        if(tot > 9 || (tot > a[now] && lim)) return Pre = 0;
        return Pre = ((Pre = tot % Res == rm) ? 1 : 0);
    }
    for(int i = 0; i <= 9; i ++)
    {
        if(i > a[now] && lim) break;
        if(tot break;
        int q = (mul[now] * i) % Res; q = q % Res; 
        int L = (i == a[now] && lim);
        f[now][tot][rm][lim] += DP(now - 1, tot - i, (rm - q + Res) % Res, L);
    }
    return f[now][tot][rm][lim];
}
#undef Pre

int Solve(int x)
{
    int k = x, ans = 0, num = 0; 
    while(k) num ++, a[num] = k % 10, k /= 10;
    for(int i = 1; i <= 163; i ++)
    {
        Res = i; if(i > num * 9) continue;
        memset(f, -1, sizeof(f));
        ans += DP(num, i, 0, 1);
    }
    return ans;
}

signed main()
{
    int a = read(), b = read(); mul[1] = 1;
    for(int i = 2; i <= 20; i ++) mul[i] = mul[i - 1] * 10;
    printf("%lld\n", Solve(b) - Solve(a - 1));
    return 0;
}

 


推荐阅读
  • Splay Tree 区间操作优化
    本文详细介绍了使用Splay Tree进行区间操作的实现方法,包括插入、删除、修改、翻转和求和等操作。通过这些操作,可以高效地处理动态序列问题,并且代码实现具有一定的挑战性,有助于编程能力的提升。 ... [详细]
  • 本文详细探讨了KMP算法中next数组的构建及其应用,重点分析了未改良和改良后的next数组在字符串匹配中的作用。通过具体实例和代码实现,帮助读者更好地理解KMP算法的核心原理。 ... [详细]
  • 本文介绍如何使用Objective-C结合dispatch库进行并发编程,以提高素数计数任务的效率。通过对比纯C代码与引入并发机制后的代码,展示dispatch库的强大功能。 ... [详细]
  • 题目描述:给定n个半开区间[a, b),要求使用两个互不重叠的记录器,求最多可以记录多少个区间。解决方案采用贪心算法,通过排序和遍历实现最优解。 ... [详细]
  • UNP 第9章:主机名与地址转换
    本章探讨了用于在主机名和数值地址之间进行转换的函数,如gethostbyname和gethostbyaddr。此外,还介绍了getservbyname和getservbyport函数,用于在服务器名和端口号之间进行转换。 ... [详细]
  • 本文探讨了如何在给定整数N的情况下,找到两个不同的整数a和b,使得它们的和最大,并且满足特定的数学条件。 ... [详细]
  • 题目Link题目学习link1题目学习link2题目学习link3%%%受益匪浅!-----&# ... [详细]
  • golang常用库:配置文件解析库/管理工具viper使用
    golang常用库:配置文件解析库管理工具-viper使用-一、viper简介viper配置管理解析库,是由大神SteveFrancia开发,他在google领导着golang的 ... [详细]
  • 火星商店问题:线段树分治与持久化Trie树的应用
    本题涉及编号为1至n的火星商店,每个商店有一个永久商品价值v。操作包括每天在指定商店增加一个新商品,以及查询某段时间内某些商店中所有商品(含永久商品)与给定密码值的最大异或结果。通过线段树分治和持久化Trie树来高效解决此问题。 ... [详细]
  • 主要用了2个类来实现的,话不多说,直接看运行结果,然后在奉上源代码1.Index.javaimportjava.awt.Color;im ... [详细]
  • 本文探讨了如何在模运算下高效计算组合数C(n, m),并详细介绍了乘法逆元的应用。通过扩展欧几里得算法求解乘法逆元,从而实现除法取余的计算。 ... [详细]
  • 本文探讨了 Objective-C 中的一些重要语法特性,包括 goto 语句、块(block)的使用、访问修饰符以及属性管理等。通过实例代码和详细解释,帮助开发者更好地理解和应用这些特性。 ... [详细]
  • 从 .NET 转 Java 的自学之路:IO 流基础篇
    本文详细介绍了 Java 中的 IO 流,包括字节流和字符流的基本概念及其操作方式。探讨了如何处理不同类型的文件数据,并结合编码机制确保字符数据的正确读写。同时,文中还涵盖了装饰设计模式的应用,以及多种常见的 IO 操作实例。 ... [详细]
  • 本文探讨了 C++ 中普通数组和标准库类型 vector 的初始化方法。普通数组具有固定长度,而 vector 是一种可扩展的容器,允许动态调整大小。文章详细介绍了不同初始化方式及其应用场景,并提供了代码示例以加深理解。 ... [详细]
  • 本文详细介绍了C语言中链表的两种动态创建方法——头插法和尾插法,包括具体的实现代码和运行示例。通过这些内容,读者可以更好地理解和掌握链表的基本操作。 ... [详细]
author-avatar
局外人
这个家伙很懒,什么也没留下!
PHP1.CN | 中国最专业的PHP中文社区 | DevBox开发工具箱 | json解析格式化 |PHP资讯 | PHP教程 | 数据库技术 | 服务器技术 | 前端开发技术 | PHP框架 | 开发工具 | 在线工具
Copyright © 1998 - 2020 PHP1.CN. All Rights Reserved | 京公网安备 11010802041100号 | 京ICP备19059560号-4 | PHP1.CN 第一PHP社区 版权所有