热门标签 | HotTags
当前位置:  开发笔记 > 编程语言 > 正文

Tensorflow中使用tf.conv2d_transpose()函数进行卷积转置操作

我先解释一下必要信息:tf.conv2d_transpose(value,filter,output_shape,strides,paddingSAME,dat

我先解释一下必要信息:

tf.conv2d_transpose(value, filter, output_shape, strides, padding="SAME", data_format="NHWC", name=None)

 

除去name参数用以指定该操作的name,与方法有关的一共六个参数:

 

 

第一个参数value:指需要做反卷积的输入图像,它要求是一个Tensor
第二个参数filter:卷积核,它要求是一个Tensor,具有[filter_height, filter_width, out_channels, in_channels]这样的shape,具体含义是[卷积核的高度,卷积核的宽度,卷积核个数,图像通道数]
第三个参数output_shape:反卷积操作输出的shape,细心的同学会发现卷积操作是没有这个参数的.
第四个参数strides:反卷积时在图像每一维的步长,这是一个一维的向量,长度4
第五个参数padding:string类型的量,只能是"SAME","VALID"其中之一,这个值决定了不同的卷积方式
第六个参数data_format:string类型的量,'NHWC'和'NCHW'其中之一,这是tensorflow新版本中新加的参数,它说明了value参数的数据格式。'NHWC'指tensorflow标准的数据格式[batch, height, width, in_channels],'NCHW'指Theano的数据格式,[batch, in_channels,height, width],当然默认值是'NHWC'

 

 

通俗的讲这个解卷积,也就做反卷积,也叫做转置卷积(最贴切),我们就叫做反卷积吧,它的目的就是卷积的反向操作, 

所以在做这些之前,你心里要有一个正向卷积的流程在心里,什么?你没有?好吧,那我就引导你一下:

input_shape = [1,5,5,3] 
kernel_shape=[2,2,3,1] 
strides=[1,2,2,1] 
padding = "SAME"

 

out_shape   结果应该是什么,应该是[1,3,3,1] 只有一个通道的3*3的图片,

然后我们就对它进行反向操作,注意哪方面不同:

设x=out_shape,#[1,3,3,1]

import tensorflow as tf
tf.set_random_seed(1)x = tf.random_normal(shape=[1,3,3,1])#正向卷积的结果,要作为反向卷积的输出
kernel = tf.random_normal(shape=[2,2,3,1])#正向卷积的kernel的模样# strides 和padding也是假想中 正向卷积的模样。
y = tf.nn.conv2d_transpose(x,kernel,output_shape=[1,5,5,3],strides=[1,2,2,1],padding="SAME")
# 在这里,output_shape=[1,6,6,3]也可以,考虑正向过程,[1,6,6,3]时,然后通过
# kernel_shape:[2,2,3,1],strides:[1,2,2,1]也可以
# 获得x_shape:[1,3,3,1]。
# output_shape 也可以是一个 tensor
sess = tf.Session()
tf.global_variables_initializer().run(session=sess)print(y.eval(session=sess))

然后输出的y就是最上面的input_shape,

我想到了一个很合理的方法就是这样定制你的反卷积网络,也即是你在进行反卷积之前,你要推算一下正向卷积所需要的路径,然后把正向卷积所需要的kernel,和strides写入tf.conv2d_transpose()函数就行了,当然输入和输出要互相对换一下就行了,

下面是我自己实现的3维反卷积操作,原理是一样的:

import tensorflow as tfkernel1 = tf.constant(1.0, shape=[3,3,3,512,512]) #正向卷积核
kernel2 = tf.constant(1.0, shape=[3,3,3,512,512]) #反向卷积核
x3 = tf.constant(1.0, shape=[10,2,7,7,512])#正向卷积输入
y2 = tf.nn.conv3d(x3, kernel1, strides=[1,1,1,1,1], padding="SAME") #正向卷积
pool=tf.nn.max_pool3d(y2,ksize=[1,2,2,2,1],strides=[1,2,2,2,1],padding='SAME')#池化sess=tf.Session()
sess.run(tf.global_variables_initializer())
sess.run(pool)
print(pool.shape)#(10,1,4,4,512)#反向卷积
y3 = tf.nn.conv3d_transpose(pool,kernel2,output_shape=[10,2,7,7,512], strides=[1,2,2,2,1],padding="SAME")
sess.run(y3)
print(y3.shape)#(10,2,7,7,512)

上面的例子是由[10,2,7,7,512]----卷积池化到----[10,1,4,4,512]----反卷积到----[10,2,7,7,512]    

至于内部原理是怎么实现的,请看:https://blog.csdn.net/u012938704/article/details/52838902

https://blog.csdn.net/kekong0713/article/details/68941498

http://deeplearning.net/software/theano_versions/dev/tutorial/conv_arithmetic.html#transposed-convolution-arithmetic


推荐阅读
  • 尽管使用TensorFlow和PyTorch等成熟框架可以显著降低实现递归神经网络(RNN)的门槛,但对于初学者来说,理解其底层原理至关重要。本文将引导您使用NumPy从头构建一个用于自然语言处理(NLP)的RNN模型。 ... [详细]
  • 实体映射最强工具类:MapStruct真香 ... [详细]
  • 优化局域网SSH连接延迟问题的解决方案
    本文介绍了解决局域网内SSH连接到服务器时出现长时间等待问题的方法。通过调整配置和优化网络设置,可以显著缩短SSH连接的时间。 ... [详细]
  • 本文将深入探讨如何在不依赖第三方库的情况下,使用 React 处理表单输入和验证。我们将介绍一种高效且灵活的方法,涵盖表单提交、输入验证及错误处理等关键功能。 ... [详细]
  • 本文详细介绍了使用NumPy和TensorFlow实现的逻辑回归算法。通过具体代码示例,解释了数据加载、模型训练及分类预测的过程。 ... [详细]
  • 本文详细介绍了Java中org.w3c.dom.Text类的splitText()方法,通过多个代码示例展示了其实际应用。该方法用于将文本节点在指定位置拆分为两个节点,并保持在文档树中。 ... [详细]
  • 本文详细介绍了 Apache Jena 库中的 Txn.executeWrite 方法,通过多个实际代码示例展示了其在不同场景下的应用,帮助开发者更好地理解和使用该方法。 ... [详细]
  • 本文详细介绍了Java中的访问器(getter)和修改器(setter),探讨了它们在保护数据完整性、增强代码可维护性方面的重要作用。通过具体示例,展示了如何正确使用这些方法来控制类属性的访问和更新。 ... [详细]
  • Scala 实现 UTF-8 编码属性文件读取与克隆
    本文介绍如何使用 Scala 以 UTF-8 编码方式读取属性文件,并实现属性文件的克隆功能。通过这种方式,可以确保配置文件在多线程环境下的一致性和高效性。 ... [详细]
  • 毕业设计:基于机器学习与深度学习的垃圾邮件(短信)分类算法实现
    本文详细介绍了如何使用机器学习和深度学习技术对垃圾邮件和短信进行分类。内容涵盖从数据集介绍、预处理、特征提取到模型训练与评估的完整流程,并提供了具体的代码示例和实验结果。 ... [详细]
  • 本文详细介绍了Java中的输入输出(IO)流,包括其基本概念、分类及应用。IO流是用于在程序和外部资源之间传输数据的一套API。根据数据流动的方向,可以分为输入流(从外部流向程序)和输出流(从程序流向外部)。此外,还涵盖了字节流和字符流的区别及其具体实现。 ... [详细]
  • 卷积神经网络(CNN)基础理论与架构解析
    本文介绍了卷积神经网络(CNN)的基本概念、常见结构及其各层的功能。重点讨论了LeNet-5、AlexNet、ZFNet、VGGNet和ResNet等经典模型,并详细解释了输入层、卷积层、激活层、池化层和全连接层的工作原理及优化方法。 ... [详细]
  • 不确定性|放入_华为机试题 HJ9提取不重复的整数
    不确定性|放入_华为机试题 HJ9提取不重复的整数 ... [详细]
  • 本文介绍了一种根据目标检测结果,从原始XML文件中提取并分析特定类别的方法。通过解析XML文件,筛选出特定类别的图像和标注信息,并保存到新的文件夹中,以便进一步分析和处理。 ... [详细]
  • 本文详细介绍如何通过Anaconda 3.5.01快速安装TensorFlow,包括环境配置和具体步骤。 ... [详细]
author-avatar
supe丶r女人帮
这个家伙很懒,什么也没留下!
PHP1.CN | 中国最专业的PHP中文社区 | DevBox开发工具箱 | json解析格式化 |PHP资讯 | PHP教程 | 数据库技术 | 服务器技术 | 前端开发技术 | PHP框架 | 开发工具 | 在线工具
Copyright © 1998 - 2020 PHP1.CN. All Rights Reserved | 京公网安备 11010802041100号 | 京ICP备19059560号-4 | PHP1.CN 第一PHP社区 版权所有