我先解释一下必要信息:tf.conv2d_transpose(value,filter,output_shape,strides,paddingSAME,dat
我先解释一下必要信息:
tf.conv2d_transpose(value, filter, output_shape, strides, padding="SAME", data_format="NHWC", name=None)
除去name参数用以指定该操作的name,与方法有关的一共六个参数:
第一个参数value:指需要做反卷积的输入图像,它要求是一个Tensor
第二个参数filter:卷积核,它要求是一个Tensor,具有[filter_height, filter_width, out_channels, in_channels]这样的shape,具体含义是[卷积核的高度,卷积核的宽度,卷积核个数,图像通道数]
第三个参数output_shape:反卷积操作输出的shape,细心的同学会发现卷积操作是没有这个参数的.
第四个参数strides:反卷积时在图像每一维的步长,这是一个一维的向量,长度4
第五个参数padding:string类型的量,只能是"SAME","VALID"其中之一,这个值决定了不同的卷积方式
第六个参数data_format:string类型的量,'NHWC'和'NCHW'其中之一,这是tensorflow新版本中新加的参数,它说明了value参数的数据格式。'NHWC'指tensorflow标准的数据格式[batch, height, width, in_channels],'NCHW'指Theano的数据格式,[batch, in_channels,height, width],当然默认值是'NHWC'
通俗的讲这个解卷积,也就做反卷积,也叫做转置卷积(最贴切),我们就叫做反卷积吧,它的目的就是卷积的反向操作,
所以在做这些之前,你心里要有一个正向卷积的流程在心里,什么?你没有?好吧,那我就引导你一下:
input_shape = [1,5,5,3]
kernel_shape=[2,2,3,1]
strides=[1,2,2,1]
padding = "SAME"
out_shape 结果应该是什么,应该是[1,3,3,1] 只有一个通道的3*3的图片,
然后我们就对它进行反向操作,注意哪方面不同:
设x=out_shape,#[1,3,3,1]
import tensorflow as tf
tf.set_random_seed(1)x = tf.random_normal(shape=[1,3,3,1])#正向卷积的结果,要作为反向卷积的输出
kernel = tf.random_normal(shape=[2,2,3,1])#正向卷积的kernel的模样# strides 和padding也是假想中 正向卷积的模样。
y = tf.nn.conv2d_transpose(x,kernel,output_shape=[1,5,5,3],strides=[1,2,2,1],padding="SAME")
# 在这里,output_shape=[1,6,6,3]也可以,考虑正向过程,[1,6,6,3]时,然后通过
# kernel_shape:[2,2,3,1],strides:[1,2,2,1]也可以
# 获得x_shape:[1,3,3,1]。
# output_shape 也可以是一个 tensor
sess = tf.Session()
tf.global_variables_initializer().run(session=sess)print(y.eval(session=sess))
然后输出的y就是最上面的input_shape,
我想到了一个很合理的方法就是这样定制你的反卷积网络,也即是你在进行反卷积之前,你要推算一下正向卷积所需要的路径,然后把正向卷积所需要的kernel,和strides写入tf.conv2d_transpose()函数就行了,当然输入和输出要互相对换一下就行了,
下面是我自己实现的3维反卷积操作,原理是一样的:
import tensorflow as tfkernel1 = tf.constant(1.0, shape=[3,3,3,512,512]) #正向卷积核
kernel2 = tf.constant(1.0, shape=[3,3,3,512,512]) #反向卷积核
x3 = tf.constant(1.0, shape=[10,2,7,7,512])#正向卷积输入
y2 = tf.nn.conv3d(x3, kernel1, strides=[1,1,1,1,1], padding="SAME") #正向卷积
pool=tf.nn.max_pool3d(y2,ksize=[1,2,2,2,1],strides=[1,2,2,2,1],padding='SAME')#池化sess=tf.Session()
sess.run(tf.global_variables_initializer())
sess.run(pool)
print(pool.shape)#(10,1,4,4,512)#反向卷积
y3 = tf.nn.conv3d_transpose(pool,kernel2,output_shape=[10,2,7,7,512], strides=[1,2,2,2,1],padding="SAME")
sess.run(y3)
print(y3.shape)#(10,2,7,7,512)
上面的例子是由[10,2,7,7,512]----卷积池化到----[10,1,4,4,512]----反卷积到----[10,2,7,7,512]
至于内部原理是怎么实现的,请看:https://blog.csdn.net/u012938704/article/details/52838902
https://blog.csdn.net/kekong0713/article/details/68941498
http://deeplearning.net/software/theano_versions/dev/tutorial/conv_arithmetic.html#transposed-convolution-arithmetic