热门标签 | HotTags
当前位置:  开发笔记 > 运维 > 正文

Tensorflow设置显存自适应,显存比例的操作

今天小编就为大家分享一篇Tensorflow设置显存自适应,显存比例的操作,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧

Tensorfow框架下,在模型运行时,设置对显存的占用。

1. 按比例

cOnfig= tf.ConfigProto()
config.gpu_options.per_process_gpu_memory_fraction = 0.4 # 根据自己的需求确定
session = tf.Session(cOnfig=config, ...)

2. 自适应

cOnfig= tf.ConfigProto()
config.gpu_options.allow_growth = True
session = tf.Session(cOnfig=config, ...)

设置GPU的使用率的时候,都是在创建Session的时候,对config类进行设置。

此外,当电脑上有多块GPU的时候,可以指定选取哪一快GPU进行计算。

# 在程序开头添加
os.environ['CUDA_VISIBLE_DEVICES'] = '0' #使用 GPU 0 0对应着ubuntu系统给GPU的序号,可通过Nvidia-smi命令查看

若存在多个GPU

os.environ['CUDA_VISIBLE_DEVICES'] = '0,1' # 使用 GPU 0,1

一个常见的在代码中指定GPU使用的范例:

import tensorflow as tf
import numpy as np
import os

os.environ['CUDA_VISIBLE_DEVICES']='0'
cOnfig= tf.ConfigProto()
config.gpu_options.per_process_gpu_memory_fraction=0.6

with tf.Session(graph=...,cOnfig=config) as sess:

## 后续的操作

以上这篇Tensorflow设置显存自适应,显存比例的操作就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持。


推荐阅读
  • 本文详细介绍了 TensorFlow 的入门实践,特别是使用 MNIST 数据集进行数字识别的项目。文章首先解析了项目文件结构,并解释了各部分的作用,随后逐步讲解了如何通过 TensorFlow 实现基本的神经网络模型。 ... [详细]
  • 在Ubuntu 16.04中使用Anaconda安装TensorFlow
    本文详细介绍了如何在Ubuntu 16.04系统上通过Anaconda环境管理工具安装TensorFlow。首先,需要下载并安装Anaconda,然后配置环境变量以确保系统能够识别Anaconda命令。接着,创建一个特定的Python环境用于安装TensorFlow,并通过指定的镜像源加速安装过程。最后,通过一个简单的线性回归示例验证TensorFlow的安装是否成功。 ... [详细]
  • 解决TensorFlow CPU版本安装中的依赖问题
    本文记录了在安装CPU版本的TensorFlow过程中遇到的依赖问题及解决方案,特别是numpy版本不匹配和动态链接库(DLL)错误。通过详细的步骤说明和专业建议,帮助读者顺利安装并使用TensorFlow。 ... [详细]
  • 在编译BSP包过程中,遇到了一个与 'gets' 函数相关的编译错误。该问题通常发生在较新的编译环境中,由于 'gets' 函数已被弃用并视为安全漏洞。本文将详细介绍如何通过修改源代码和配置文件来解决这一问题。 ... [详细]
  • 本文介绍了一种根据目标检测结果,从原始XML文件中提取并分析特定类别的方法。通过解析XML文件,筛选出特定类别的图像和标注信息,并保存到新的文件夹中,以便进一步分析和处理。 ... [详细]
  • 深入浅出TensorFlow数据读写机制
    本文详细介绍TensorFlow中的数据读写操作,包括TFRecord文件的创建与读取,以及数据集(dataset)的相关概念和使用方法。 ... [详细]
  • Keras 实战:自编码器入门指南
    本文介绍了使用 Keras 框架实现自编码器的基本方法。自编码器是一种用于无监督学习的神经网络模型,主要功能包括数据降维、特征提取等。通过实际案例,我们将展示如何使用全连接层和卷积层来构建自编码器,并讨论不同维度对重建效果的影响。 ... [详细]
  • 本改进旨在提升运行选择器中名称换行的显示效果,以提高用户体验。 ... [详细]
  • 基于2-channelnetwork的图片相似度判别一、相关理论本篇博文主要讲解2015年CVPR的一篇关于图像相似度计算的文章:《LearningtoCompar ... [详细]
  • 本文详细介绍了如何在Windows环境下配置GPU支持,并使用Keras和TensorFlow实现YOLOv3模型进行图像目标检测。对于环境搭建的具体步骤,可参考外部链接提供的指南。 ... [详细]
  • 本文详细介绍了使用NumPy和TensorFlow实现的逻辑回归算法。通过具体代码示例,解释了数据加载、模型训练及分类预测的过程。 ... [详细]
  • 本文详细介绍如何通过Anaconda 3.5.01快速安装TensorFlow,包括环境配置和具体步骤。 ... [详细]
  • 吴恩达推出TensorFlow实践课程,Python基础即可入门,四个月掌握核心技能
    量子位报道,deeplearning.ai最新发布了TensorFlow实践课程,适合希望使用TensorFlow开发AI应用的学习者。该课程涵盖机器学习模型构建、图像识别、自然语言处理及时间序列预测等多个方面。 ... [详细]
  • 本文详细介绍了非极大值抑制(Non-Maximum Suppression, NMS)算法的原理及其在目标检测中的应用,并提供了C++语言的具体实现代码。NMS算法通过筛选出高得分的检测框并移除重叠度高的其他检测框,有效提高了检测结果的准确性和可靠性。 ... [详细]
  • 本文探讨了图像标签的多种分类场景及其在以图搜图技术中的应用,涵盖了从基础理论到实际项目实施的全面解析。 ... [详细]
author-avatar
古月礻羊米兰_318
这个家伙很懒,什么也没留下!
PHP1.CN | 中国最专业的PHP中文社区 | DevBox开发工具箱 | json解析格式化 |PHP资讯 | PHP教程 | 数据库技术 | 服务器技术 | 前端开发技术 | PHP框架 | 开发工具 | 在线工具
Copyright © 1998 - 2020 PHP1.CN. All Rights Reserved | 京公网安备 11010802041100号 | 京ICP备19059560号-4 | PHP1.CN 第一PHP社区 版权所有