热门标签 | HotTags
当前位置:  开发笔记 > 开发工具 > 正文

Tensorflow卷积神经网络实例进阶

这篇文章主要为大家详细介绍了Tensorflow卷积神经网络实例进阶,具有一定的参考价值,感兴趣的小伙伴们可以参考一下

在Tensorflow卷积神经网络实例这篇博客中,我们实现了一个简单的卷积神经网络,没有复杂的Trick。接下来,我们将使用CIFAR-10数据集进行训练。

CIFAR-10是一个经典的数据集,包含60000张32*32的彩色图像,其中训练集50000张,测试集10000张。CIFAR-10如同其名字,一共标注为10类,每一类图片6000张。

本文实现了进阶的卷积神经网络来解决CIFAR-10分类问题,我们使用了一些新的技巧:

  1. 对weights进行了L2的正则化
  2. 对图片进行了翻转、随机剪切等数据增强,制造了更多样本
  3. 在每个卷积-最大池化层后面使用了LRN(局部响应归一化层),增强了模型的泛化能力

首先需要下载Tensorflow models Tensorflow models,以便使用其中的CIFAR-10数据的类.进入目录models/tutorials/image/cifar10目录,执行以下代码

import cifar10
import cifar10_input
import tensorflow as tf
import numpy as np
import time

# 定义batch_size, 训练轮数max_steps, 以及下载CIFAR-10数据的默认路径
max_steps = 3000
batch_size = 128
data_dir = 'E:\\tmp\cifar10_data\cifar-10-batches-bin'

# 定义初始化weight的函数,定义的同时,对weight加一个L2 loss,放在集'losses'中
def variable_with_weight_loss(shape, stddev, w1):
  var = tf.Variable(tf.truncated_normal(shape, stddev=stddev))
  if w1 is not None:
    weight_loss = tf.multiply(tf.nn.l2_loss(var), w1, name='weight_loss')
    tf.add_to_collection('losses', weight_loss)
  return var

# 使用cifar10类下载数据集,并解压、展开到其默认位置
#cifar10.maybe_download_and_extract()

# 在使用cifar10_input类中的distorted_inputs函数产生训练需要使用的数据。需要注意的是,返回的是已经封装好的tensor,
# 且对数据进行了Data Augmentation(水平翻转、随机剪切、设置随机亮度和对比度、对数据进行标准化)
images_train, labels_train = cifar10_input.distorted_inputs(data_dir=data_dir, batch_size=batch_size)

# 再使用cifar10_input.inputs函数生成测试数据,这里不需要进行太多处理
images_test, labels_test = cifar10_input.inputs(eval_data=True,
                        data_dir=data_dir,
                        batch_size=batch_size)

# 创建数据的placeholder
image_holder = tf.placeholder(tf.float32, [batch_size, 24, 24, 3])
label_holder = tf.placeholder(tf.int32, [batch_size])

# 创建第一个卷积层
weight1 = variable_with_weight_loss(shape=[5, 5, 3, 64], stddev=5e-2,
                  w1=0.0)
kernel1 = tf.nn.conv2d(image_holder, weight1, strides=[1, 1, 1, 1], padding='SAME')
bias1 = tf.Variable(tf.constant(0.0, shape=[64]))
conv1 = tf.nn.relu(tf.nn.bias_add(kernel1, bias1))
pool1 = tf.nn.max_pool(conv1, ksize=[1, 3, 3, 1], strides=[1, 2, 2, 1],
            padding='SAME')
# LRN层对ReLU会比较有用,但不适合Sigmoid这种有固定边界并且能抑制过大值的激活函数
norm1 = tf.nn.lrn(pool1, 4, bias=1.0, alpha=0.001 / 9.0, beta=0.75)

# 创建第二个卷积层
weight2 = variable_with_weight_loss(shape=[5, 5, 64, 64], stddev=5e-2,
                  w1=0.0)
kernel2 = tf.nn.conv2d(norm1, weight2, strides=[1, 1, 1, 1], padding='SAME')
bias2 = tf.Variable(tf.constant(0.1, shape=[64]))
conv2 = tf.nn.relu(tf.nn.bias_add(kernel2, bias2))
norm2 = tf.nn.lrn(conv2, 4, bias=1.0, alpha=0.001 / 9.0, beta=0.75)
pool2 = tf.nn.max_pool(norm2, ksize=[1, 3, 3, 1], strides=[1, 2, 2, 1],
            padding='SAME')

# 使用一个全连接层
reshape = tf.reshape(pool2, [batch_size, -1])
dim = reshape.get_shape()[1].value
weight3 = variable_with_weight_loss(shape=[dim, 384], stddev=0.04, w1=0.004)
bias3 = tf.Variable(tf.constant(0.1, shape=[384]))
local3 = tf.nn.relu(tf.matmul(reshape, weight3) + bias3)

# 再使用一个全连接层,隐含节点数下降了一半,只有192个,其他的超参数保持不变
weight4 = variable_with_weight_loss(shape=[384, 192], stddev=0.04, w1=0.004)
bias4 = tf.Variable(tf.constant(0.1, shape=[192]))
local4 = tf.nn.relu(tf.matmul(local3, weight4) + bias4)

# 最后一层,将softmax放在了计算loss部分
weight5 = variable_with_weight_loss(shape=[192, 10], stddev=1 / 192.0, w1=0.0)
bias5 = tf.Variable(tf.constant(0.0, shape=[10]))
logits = tf.add(tf.matmul(local4, weight5), bias5)

# 定义loss
def loss(logits, labels):
  labels = tf.cast(labels, tf.int64)
  cross_entropy = tf.nn.sparse_softmax_cross_entropy_with_logits(logits=logits, labels=labels,
                                  name='cross_entropy_per_example')
  cross_entropy_mean = tf.reduce_mean(cross_entropy, name='cross_entropy')
  tf.add_to_collection('losses', cross_entropy_mean)
  return tf.add_n(tf.get_collection('losses'), name='total_loss')

# 获取最终的loss
loss = loss(logits, label_holder)

# 优化器
train_op = tf.train.AdamOptimizer(1e-3).minimize(loss)

# 使用tf.nn.in_top_k函数求输出结果中top k的准确率,默认使用top 1,也就是输出分数最高的那一类的准确率
top_k_op = tf.nn.in_top_k(logits, label_holder, 1)

# 使用tf.InteractiveSession创建默认的session,接着初始化全部模型参数
sess = tf.InteractiveSession()
tf.global_variables_initializer().run()

# 启动图片数据增强线程
tf.train.start_queue_runners()

# 正式开始训练
for step in range(max_steps):
  start_time = time.time()
  image_batch, label_batch = sess.run([images_train, labels_train])
  _, loss_value = sess.run([train_op, loss], feed_dict={image_holder: image_batch, label_holder: label_batch})
  duration = time.time() - start_time
  if step % 10 == 0:
    example_per_sec = batch_size / duration
    sec_per_batch = float(duration)
    format_str = 'step %d, loss=%.2f ,%.1f examples/sec, %.3f sec/batch'
    print(format_str % (step, loss_value, example_per_sec, sec_per_batch))

num_examples = 10000
import math
num_iter = int(math.ceil(num_examples / batch_size))
true_count = 0
total_sample_count = num_iter * batch_size
step = 0
while step 

运行结果:

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持。


推荐阅读
  • 尽管深度学习带来了广泛的应用前景,其训练通常需要强大的计算资源。然而,并非所有开发者都能负担得起高性能服务器或专用硬件。本文探讨了如何在有限的硬件条件下(如ARM CPU)高效运行深度神经网络,特别是通过选择合适的工具和框架来加速模型推理。 ... [详细]
  • 深入浅出TensorFlow数据读写机制
    本文详细介绍TensorFlow中的数据读写操作,包括TFRecord文件的创建与读取,以及数据集(dataset)的相关概念和使用方法。 ... [详细]
  • 构建基于BERT的中文NL2SQL模型:一个简明的基准
    本文探讨了将自然语言转换为SQL语句(NL2SQL)的任务,这是人工智能领域中一项非常实用的研究方向。文章介绍了笔者在公司举办的首届中文NL2SQL挑战赛中的实践,该比赛提供了金融和通用领域的表格数据,并标注了对应的自然语言与SQL语句对,旨在训练准确的NL2SQL模型。 ... [详细]
  • 尽管使用TensorFlow和PyTorch等成熟框架可以显著降低实现递归神经网络(RNN)的门槛,但对于初学者来说,理解其底层原理至关重要。本文将引导您使用NumPy从头构建一个用于自然语言处理(NLP)的RNN模型。 ... [详细]
  • 毕业设计:基于机器学习与深度学习的垃圾邮件(短信)分类算法实现
    本文详细介绍了如何使用机器学习和深度学习技术对垃圾邮件和短信进行分类。内容涵盖从数据集介绍、预处理、特征提取到模型训练与评估的完整流程,并提供了具体的代码示例和实验结果。 ... [详细]
  • 本教程详细介绍了如何使用 TensorFlow 2.0 构建和训练多层感知机(MLP)网络,涵盖回归和分类任务。通过具体示例和代码实现,帮助初学者快速掌握 TensorFlow 的核心概念和操作。 ... [详细]
  • Coursera ML 机器学习
    2019独角兽企业重金招聘Python工程师标准线性回归算法计算过程CostFunction梯度下降算法多变量回归![选择特征](https:static.oschina.n ... [详细]
  • 本文介绍了如何利用TensorFlow框架构建一个简单的非线性回归模型。通过生成200个随机数据点进行训练,模型能够学习并预测这些数据点的非线性关系。 ... [详细]
  • TWEN-ASR 语音识别入门:运行首个程序
    本文详细介绍了如何使用TWEN-ASR ONE开发板运行第一个语音识别程序,包括开发环境搭建、代码编写、下载和调试等步骤。 ... [详细]
  • 基于2-channelnetwork的图片相似度判别一、相关理论本篇博文主要讲解2015年CVPR的一篇关于图像相似度计算的文章:《LearningtoCompar ... [详细]
  • 本文详细介绍了如何在Windows环境下配置GPU支持,并使用Keras和TensorFlow实现YOLOv3模型进行图像目标检测。对于环境搭建的具体步骤,可参考外部链接提供的指南。 ... [详细]
  • 利用Java与Tesseract-OCR实现数字识别
    本文深入探讨了如何利用Java语言结合Tesseract-OCR技术来实现图像中的数字识别功能,旨在为开发者提供详细的指导和实践案例。 ... [详细]
  • 在Ubuntu 16.04中使用Anaconda安装TensorFlow
    本文详细介绍了如何在Ubuntu 16.04系统上通过Anaconda环境管理工具安装TensorFlow。首先,需要下载并安装Anaconda,然后配置环境变量以确保系统能够识别Anaconda命令。接着,创建一个特定的Python环境用于安装TensorFlow,并通过指定的镜像源加速安装过程。最后,通过一个简单的线性回归示例验证TensorFlow的安装是否成功。 ... [详细]
  • 吴恩达推出TensorFlow实践课程,Python基础即可入门,四个月掌握核心技能
    量子位报道,deeplearning.ai最新发布了TensorFlow实践课程,适合希望使用TensorFlow开发AI应用的学习者。该课程涵盖机器学习模型构建、图像识别、自然语言处理及时间序列预测等多个方面。 ... [详细]
  • 本文探讨了图像标签的多种分类场景及其在以图搜图技术中的应用,涵盖了从基础理论到实际项目实施的全面解析。 ... [详细]
author-avatar
yuhemecy_883
这个家伙很懒,什么也没留下!
PHP1.CN | 中国最专业的PHP中文社区 | DevBox开发工具箱 | json解析格式化 |PHP资讯 | PHP教程 | 数据库技术 | 服务器技术 | 前端开发技术 | PHP框架 | 开发工具 | 在线工具
Copyright © 1998 - 2020 PHP1.CN. All Rights Reserved | 京公网安备 11010802041100号 | 京ICP备19059560号-4 | PHP1.CN 第一PHP社区 版权所有