热门标签 | HotTags
当前位置:  开发笔记 > 前端 > 正文

TensorFlow—softmax_cross_entropy_with_logits函数详解

softmax_cross_entropy_with_logits函数原型:

 

tf.nn.softmax_cross_entropy_with_logits(labels=y, logits=pred, name=None)
函数功能:计算最后一层是softmax层的cross entropy,把softmax计算与cross entropy计算放到一起了,用一个函数来实现,用来提高程序的运行速度。

参数name:该操作的name

参数labels:shape是[batch_size, num_classes],神经网络期望输出。

 

参数logits:shape是[batch_size, num_classes] ,神经网络最后一层的输入。

具体的执行流程大概分为两步:

第一步是对网络最后一层的输出做一个softmax,这一步通常是求取输出属于某一类的概率,对于单样本而言,输出就是一个 num_classes 大小的向量([Y1,Y2,Y3,...]其中Y1,Y2,Y3,...分别代表了是属于该类的概率)

TensorFlow—softmax_cross_entropy_with_logits函数详解

第二步是softmax的输出向量[Y1,Y2,Y3,...]和样本的实际标签做一个交叉熵,

TensorFlow—softmax_cross_entropy_with_logits函数详解

TensorFlow—softmax_cross_entropy_with_logits函数详解指实际标签中第i个的值;

TensorFlow—softmax_cross_entropy_with_logits函数详解softmax的输出向量[Y1,Y2,Y3...]中,第i个元素的值。

 

总之,tensorflow之所以把softmax和cross entropy放到一个函数里计算,就是为了提高运算速度。

 

转载:https://blog.csdn.net/qiqiaiairen/article/details/53169002


推荐阅读
  • 深入浅出TensorFlow数据读写机制
    本文详细介绍TensorFlow中的数据读写操作,包括TFRecord文件的创建与读取,以及数据集(dataset)的相关概念和使用方法。 ... [详细]
  • 尽管深度学习带来了广泛的应用前景,其训练通常需要强大的计算资源。然而,并非所有开发者都能负担得起高性能服务器或专用硬件。本文探讨了如何在有限的硬件条件下(如ARM CPU)高效运行深度神经网络,特别是通过选择合适的工具和框架来加速模型推理。 ... [详细]
  • 本文详细介绍了使用NumPy和TensorFlow实现的逻辑回归算法。通过具体代码示例,解释了数据加载、模型训练及分类预测的过程。 ... [详细]
  • 尽管使用TensorFlow和PyTorch等成熟框架可以显著降低实现递归神经网络(RNN)的门槛,但对于初学者来说,理解其底层原理至关重要。本文将引导您使用NumPy从头构建一个用于自然语言处理(NLP)的RNN模型。 ... [详细]
  • 毕业设计:基于机器学习与深度学习的垃圾邮件(短信)分类算法实现
    本文详细介绍了如何使用机器学习和深度学习技术对垃圾邮件和短信进行分类。内容涵盖从数据集介绍、预处理、特征提取到模型训练与评估的完整流程,并提供了具体的代码示例和实验结果。 ... [详细]
  • 本文探讨了如何在iOS开发环境中,特别是在Xcode 6.1中,设置和应用自定义文本样式。我们将详细介绍实现方法,并提供一些实用的技巧。 ... [详细]
  • Coursera ML 机器学习
    2019独角兽企业重金招聘Python工程师标准线性回归算法计算过程CostFunction梯度下降算法多变量回归![选择特征](https:static.oschina.n ... [详细]
  • 本改进旨在提升运行选择器中名称换行的显示效果,以提高用户体验。 ... [详细]
  • 本文详细介绍了如何在Windows环境下配置GPU支持,并使用Keras和TensorFlow实现YOLOv3模型进行图像目标检测。对于环境搭建的具体步骤,可参考外部链接提供的指南。 ... [详细]
  • 利用Java与Tesseract-OCR实现数字识别
    本文深入探讨了如何利用Java语言结合Tesseract-OCR技术来实现图像中的数字识别功能,旨在为开发者提供详细的指导和实践案例。 ... [详细]
  • 在Ubuntu 16.04中使用Anaconda安装TensorFlow
    本文详细介绍了如何在Ubuntu 16.04系统上通过Anaconda环境管理工具安装TensorFlow。首先,需要下载并安装Anaconda,然后配置环境变量以确保系统能够识别Anaconda命令。接着,创建一个特定的Python环境用于安装TensorFlow,并通过指定的镜像源加速安装过程。最后,通过一个简单的线性回归示例验证TensorFlow的安装是否成功。 ... [详细]
  • 本文详细介绍了Git分布式版本控制系统中远程仓库的概念和操作方法。通过具体案例,帮助读者更好地理解和掌握如何高效管理代码库。 ... [详细]
  • 本文详细介绍如何在VSCode中配置自定义代码片段,使其具备与IDEA相似的代码生成快捷键功能。通过具体的Java和HTML代码片段示例,展示配置步骤及效果。 ... [详细]
  • 本文介绍了如何使用 Python 的 Bokeh 库在图表上绘制菱形标记。Bokeh 是一个强大的交互式数据可视化工具,支持丰富的图形自定义选项。 ... [详细]
  • 本文介绍了如何利用TensorFlow框架构建一个简单的非线性回归模型。通过生成200个随机数据点进行训练,模型能够学习并预测这些数据点的非线性关系。 ... [详细]
author-avatar
成都迅捷代驾
这个家伙很懒,什么也没留下!
PHP1.CN | 中国最专业的PHP中文社区 | DevBox开发工具箱 | json解析格式化 |PHP资讯 | PHP教程 | 数据库技术 | 服务器技术 | 前端开发技术 | PHP框架 | 开发工具 | 在线工具
Copyright © 1998 - 2020 PHP1.CN. All Rights Reserved | 京公网安备 11010802041100号 | 京ICP备19059560号-4 | PHP1.CN 第一PHP社区 版权所有