热门标签 | HotTags
当前位置:  开发笔记 > 开放平台 > 正文

特征工程入门指南:开启数据科学之旅

本文首次发布于“计算机视觉CV”微信公众号,旨在介绍特征工程的基础知识,引领读者步入数据科学领域。特征工程是机器学习流程中的关键步骤,它涉及将原始数据转换为能够更好地反映潜在问题结构的特征,从而提升模型的预测性能。通过精心设计的特征,机器学习算法能够更有效地从数据中提取有价值的信息,进而生成准确的预测或结论。

本文首发于微信公众号“计算机视觉cv”



特征工程

  机器学习将数据拟合到数学模型中来获得结论或者做出预测。这些模型吸纳特征作为输入。特征就是原始数据某方面的数学表现。在机器学习流水线中特征位于数据和模型之间。特征工程是一项从数据中提取特征,然后转换成适合机器学习模型的格式的艺术。这是机器学习流水线关键的一步,因为正确的特征可以减轻建模的难度,并因此使流水线能输出更高质量的结果。从业者们认为构建机器学习流水线的绝大多数时间都花在特征工程和数据清洗上。然后,尽管它很重要,这个话题却很少单独讨论。也许是因为正确的特征只能在模型和数据的背景中定义。由于数据和模型如此多样化,所以很难概括项目中特征工程的实践。

  尽管如此,特征工程不仅仅是一种临时实践。工作中有更深层的原则,最好就地进行说明。本书的每一章都针对一个数据问题:如何表示文本数据或图像数据,如何降低自动生成的特征的维度,何时以及如何规范化等等。把它看作是一个相互联系的短篇小说集,而不是一本长篇小说。每章都提供了大量现有特征工程技术的插图。它们一起阐明了总体原则。

  由于深度学习的发展,构建的神经网络可以自动提取数据的特征,所以有人就认为现在不再需要特征工程了,只要用神经网络就可以。其实不是的,实际上,目前的DL(深度学习)中,构建网络结构这个过程就是特征工程方法。特征工程是需要掌握的,毕竟不是每个项目都可以用深度学习来做,用机器学习做有些效果会比深度学习好,所以要两手都要抓。


目录

第 1 章:从数字数据的基本特征工程开始:过滤,合并,缩放,日志转换和能量转换以及交互功能。

第 2 章和第 3 章:深入探讨了自然文本的特征工程:bag-of-words,n-gram 和短语检测。

第 4 章:将 tf-idf 作为特征缩放的例子,并讨论它的工作原理。

第 5 章:讨论分类变量的高效编码技术,包括特征哈希和 bin-counting,步伐开始加速。

第 6 章:进行主成分分析时,深入机器学习的领域。

第 7 章:将 k-means 看作一种特征化技术,它说明了模型堆叠的有效理论。

第 8 章:都是关于图像的,在特征提取方面比文本数据更具挑战性。在得出深度学习是最新图像特征提取技术的解释之前,我们着眼于两种手动特征提取技术 SIFT 和 HOG。

第 9 章:完成了一个端到端示例中的几种不同技术,为学术论文数据集创建了一个推荐器。


参考文献

[1]Feature Engineering for Machine Learning Models. Alice Zheng[美]

 

 



推荐阅读
  • 资源推荐 | TensorFlow官方中文教程助力英语非母语者学习
    来源:机器之心。本文详细介绍了TensorFlow官方提供的中文版教程和指南,帮助开发者更好地理解和应用这一强大的开源机器学习平台。 ... [详细]
  • 机器学习中的相似度度量与模型优化
    本文探讨了机器学习中常见的相似度度量方法,包括余弦相似度、欧氏距离和马氏距离,并详细介绍了如何通过选择合适的模型复杂度和正则化来提高模型的泛化能力。此外,文章还涵盖了模型评估的各种方法和指标,以及不同分类器的工作原理和应用场景。 ... [详细]
  • 毕业设计:基于机器学习与深度学习的垃圾邮件(短信)分类算法实现
    本文详细介绍了如何使用机器学习和深度学习技术对垃圾邮件和短信进行分类。内容涵盖从数据集介绍、预处理、特征提取到模型训练与评估的完整流程,并提供了具体的代码示例和实验结果。 ... [详细]
  • 尽管深度学习带来了广泛的应用前景,其训练通常需要强大的计算资源。然而,并非所有开发者都能负担得起高性能服务器或专用硬件。本文探讨了如何在有限的硬件条件下(如ARM CPU)高效运行深度神经网络,特别是通过选择合适的工具和框架来加速模型推理。 ... [详细]
  • Coursera ML 机器学习
    2019独角兽企业重金招聘Python工程师标准线性回归算法计算过程CostFunction梯度下降算法多变量回归![选择特征](https:static.oschina.n ... [详细]
  • 机器学习核心概念与技术
    本文系统梳理了机器学习的关键知识点,涵盖模型评估、正则化、线性模型、支持向量机、决策树及集成学习等内容,并深入探讨了各算法的原理和应用场景。 ... [详细]
  • 全能终端工具推荐:高效、免费、易用
    介绍一款备受好评的全能型终端工具——MobaXterm,它不仅功能强大,而且完全免费,适合各类用户使用。 ... [详细]
  • 2017年人工智能领域的十大里程碑事件回顾
    随着2018年的临近,我们一同回顾过去一年中人工智能领域的重要进展。这一年,无论是政策层面的支持,还是技术上的突破,都显示了人工智能发展的迅猛势头。以下是精选的2017年人工智能领域最具影响力的事件。 ... [详细]
  • 本文探讨了亚马逊Go如何通过技术创新推动零售业的发展,以及面临的市场和隐私挑战。同时,介绍了亚马逊最新的‘刷手支付’技术及其潜在影响。 ... [详细]
  • 数据管理权威指南:《DAMA-DMBOK2 数据管理知识体系》
    本书提供了全面的数据管理职能、术语和最佳实践方法的标准行业解释,构建了数据管理的总体框架,为数据管理的发展奠定了坚实的理论基础。适合各类数据管理专业人士和相关领域的从业人员。 ... [详细]
  • 本文深入探讨了基于Pairwise和Listwise方法的排序学习,结合PaddlePaddle平台提供的丰富运算组件,详细介绍了如何通过这些方法构建高效、精准的排序模型。文章不仅涵盖了基础理论,还提供了实际应用场景和技术实现细节。 ... [详细]
  • 深入浅出TensorFlow数据读写机制
    本文详细介绍TensorFlow中的数据读写操作,包括TFRecord文件的创建与读取,以及数据集(dataset)的相关概念和使用方法。 ... [详细]
  • 解决PyCharm中安装PyTorch深度学习d2l包的问题
    本文详细介绍了如何在PyCharm中成功安装用于PyTorch深度学习的d2l包,包括环境配置、安装步骤及常见问题的解决方案。 ... [详细]
  • 在互联网信息爆炸的时代,当用户需求模糊或难以通过精确查询表达时,推荐系统成为解决信息过载的有效手段。美团作为国内领先的O2O平台,通过深入分析用户行为,运用先进的机器学习技术优化推荐算法,提升用户体验。 ... [详细]
  • 在Ubuntu 16.04中使用Anaconda安装TensorFlow
    本文详细介绍了如何在Ubuntu 16.04系统上通过Anaconda环境管理工具安装TensorFlow。首先,需要下载并安装Anaconda,然后配置环境变量以确保系统能够识别Anaconda命令。接着,创建一个特定的Python环境用于安装TensorFlow,并通过指定的镜像源加速安装过程。最后,通过一个简单的线性回归示例验证TensorFlow的安装是否成功。 ... [详细]
author-avatar
雨季莫犹忆
这个家伙很懒,什么也没留下!
PHP1.CN | 中国最专业的PHP中文社区 | DevBox开发工具箱 | json解析格式化 |PHP资讯 | PHP教程 | 数据库技术 | 服务器技术 | 前端开发技术 | PHP框架 | 开发工具 | 在线工具
Copyright © 1998 - 2020 PHP1.CN. All Rights Reserved | 京公网安备 11010802041100号 | 京ICP备19059560号-4 | PHP1.CN 第一PHP社区 版权所有