作者:小女人的忧伤-- | 来源:互联网 | 2023-06-06 11:01
数据结构中什么是B树?B树是为了磁盘或其它存储设备而设计的一种多叉(下面你会看到,相对于二叉,B树每个内结点有多个分支,即多叉)平衡查找树。B树又叫平衡多路查找树。一棵m阶的B树(
数据结构中什么是B树?
B 树是为了磁盘或其它存储设备而设计的一种多叉(下面你会看到,相对于二叉,B树每个内结点有多个分支,即多叉)平衡查找树。B 树又叫平衡多路查找树。
一棵m阶的B 树 (m叉树)的特性如下:树中每个结点最多含有m个孩子(m>=2);除根结点和叶子结点外,其它每个结点至少有[ceil(m / 2)]个孩子(其中ceil(x)是一个取上限的函数);若根结点不是叶子结点,则至少有2个孩子(特殊情况:没有孩子的根结点,即根结点为叶子结点,整棵树只有一个根节点);所有叶子结点都出现在同一层,叶子结点不包含任何关键字信息(可以看做是外部接点或查询失败的接点,实际上这些结点不存在,指向这些结点的指针都为null);每个非终端结点中包含有n个关键字信息: (n,P0,K1,P1,K2,P2,......,Kn,Pn)。
其中: a) Ki (i=1...n)为关键字,且关键字按顺序升序排序K(i-1)B+树结构参考
B+树的内部节点包括:Key键值,Index索引值 B+树的叶子节点包括:Key键值,Index索引值,Data数据 B+树的内部节点也可称为索引节点,叶子节点也可称为外部节点 它与B树的差异在于: 如下图,是一个B+树: 下图是B+树的插入动画: B树、B+树和二叉树、平衡二叉树一样,都是经典的数据结构。 B+树由B树和索引顺序访问方法(ISAM,是不是很熟悉?对,这也是MyISAM引擎最初参考的数据结构)演化而来,但是在实际使用过程中几乎已经没有使用B树的情况了。
B+树的定义十分复杂,因此只简要地介绍B+树:B+树是为磁盘或其他直接存取辅助设备而设计的一种平衡查找树,在B+树中,所有记录节点都是按键值的大小顺序存放在同一层的叶节点中,各叶节点指针进行连接。
B和B+树的区别在于,B+树的非叶子结点只包含导航信息,不包含实际的值,所有的叶子结点和相连的节点使用链表相连,便于区间查找和遍历。 由于B+树在内部节点上不包含数据信息,因此在内存页中能够存放更多的key。 数据存放的更加紧密,具有更好的空间局部性。因此访问叶子节点上关联的数据也具有更好的缓存命中率。
B+树的叶子结点都是相链的,因此对整棵树的便利只需要一次线性遍历叶子结点即可。而且由于数据顺序排列并且相连,所以便于区间查找和搜索。而B树则需要进行每一层的递归遍历。
相邻的元素可能在内存中不相邻,所以缓存命中性没有B+树好。 但是B树也有优点,其优点在于,由于B树的每一个节点都包含key和value,因此经常访问的元素可能离根节点更近,因此访问也更迅速。下面是B 树和B+树的区别图: 对于一颗节点为N度为M的子树,查找和插入需要logM-1N ~ logM/2N次比较。
这个很好证明,对于度为M的B树,每一个节点的子节点个数为M/2 到 M-1之间,所以树的高度在logM-1N至logM/2N之间。 这种效率是很高的,对于N=62*1000000000个节点,如果度为1024,则logM/2N <=4,即在620亿个元素中,如果这棵树的度为1024,则只需要小于4次即可定位到该节点,然后再采用二分查找即可找到要找的值。
数据结构中B树、B+树的区别
一、B树的起源
B树,最早是由德国计算机科学家Rudolf Bayer等人于1972年在论文 《Organization and Maintenance of Large Ordered Indexes》提出的,不过我去看了看原文,发现作者也没有解释为什么就叫B-trees了,所以把B树的B,简单地解释为Balanced或者Binary都不是特别严谨,也许作者就是取其名字Bayer的首字母命名的也说不定啊……
二、B树长啥样
还是直接看图比较清楚,图中所示,B树事实上是一种平衡的多叉查找树,也就是说最多可以开m个叉(m>=2),我们称之为m阶b树,为了体现本博客的良心之处,不同于其他地方都能看到2阶B树,这里特意画了一棵5阶B树 。
总的来说,m阶B树满足以下条件:
每个节点至多可以拥有m棵子树
根节点,只有至少有2个节点(要么极端情况,就是一棵树就一个根节点,单细胞生物,即是根,也是叶,也是树)
非根非叶的节点至少有的Ceil(m/2)个子树(Ceil表示向上取整,图中5阶B树,每个节点至少有3个子树,也就是至少有3个叉)
非叶节点中的信息包括[n,A0,K1,A1,K2,A2,…,Kn,An],,其中n表示该节点中保存的关键字个数,K为关键字且Ki