热门标签 | HotTags
当前位置:  开发笔记 > 运维 > 正文

使用keras实现densenet和Xception的模型融合

这篇文章主要介绍了使用keras实现densenet和Xception的模型融合,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧

我正在参加天池上的一个竞赛,刚开始用的是DenseNet121但是效果没有达到预期,因此开始尝试使用模型融合,将Desenet和Xception融合起来共同提取特征。

代码如下:

def Multimodel(cnn_weights_path=None,all_weights_path=None,class_num=5,cnn_no_vary=False):
	'''
	获取densent121,xinception并联的网络
	此处的cnn_weights_path是个列表是densenet和xception的卷积部分的权值
	'''
	input_layer=Input(shape=(224,224,3))
	dense=DenseNet121(include_top=False,weights=None,input_shape=(224,224,3))
	xception=Xception(include_top=False,weights=None,input_shape=(224,224,3))
	#res=ResNet50(include_top=False,weights=None,input_shape=(224,224,3))

	if cnn_no_vary:
		for i,layer in enumerate(dense.layers):
			dense.layers[i].trainable=False
		for i,layer in enumerate(xception.layers):
			xception.layers[i].trainable=False
		#for i,layer in enumerate(res.layers):
		#	res.layers[i].trainable=False
 
	if cnn_weights_path!=None:
		dense.load_weights(cnn_weights_path[0])
		xception.load_weights(cnn_weights_path[1])
		#res.load_weights(cnn_weights_path[2])
	dense=dense(input_layer)
	xception=xception(input_layer)

	#对dense_121和xception进行全局最大池化
	top1_model=GlobalMaxPooling2D(data_format='channels_last')(dense)
	top2_model=GlobalMaxPooling2D(data_format='channels_last')(xception)
	#top3_model=GlobalMaxPool2D(input_shape=res.output_shape)(res.outputs[0])
	
	print(top1_model.shape,top2_model.shape)
	#把top1_model和top2_model连接起来
	t=keras.layers.Concatenate(axis=1)([top1_model,top2_model])
	#第一个全连接层
	top_model=Dense(units=512,activation="relu")(t)
	top_model=Dropout(rate=0.5)(top_model)
	top_model=Dense(units=class_num,activation="softmax")(top_model)
	
	model=Model(inputs=input_layer,outputs=top_model)
 
	#加载全部的参数
	if all_weights_path:
		model.load_weights(all_weights_path)
	return model

如下进行调用:

if __name__=="__main__":
 weights_path=["./densenet121_weights_tf_dim_ordering_tf_kernels_notop.h5",
 "xception_weights_tf_dim_ordering_tf_kernels_notop.h5"]
 model=Multimodel(cnn_weights_path=weights_path,class_num=6)
 plot_model(model,to_file="G:/model.png")

最后生成的模型图如下:有点长,可以不看

需要注意的一点是,如果dense=dense(input_layer)这里报错的话,说明你用的是tensorflow1.4以下的版本,解决的方法就是

1、升级tensorflow到1.4以上

2、改代码:

def Multimodel(cnn_weights_path=None,all_weights_path=None,class_num=5,cnn_no_vary=False):
	'''
	获取densent121,xinception并联的网络
	此处的cnn_weights_path是个列表是densenet和xception的卷积部分的权值
	'''
	dir=os.getcwd()
	input_layer=Input(shape=(224,224,3))
	
	dense=DenseNet121(include_top=False,weights=None,input_tensor=input_layer,
		input_shape=(224,224,3))
	xception=Xception(include_top=False,weights=None,input_tensor=input_layer,
		input_shape=(224,224,3))
	#res=ResNet50(include_top=False,weights=None,input_shape=(224,224,3))
 
	if cnn_no_vary:
		for i,layer in enumerate(dense.layers):
			dense.layers[i].trainable=False
		for i,layer in enumerate(xception.layers):
			xception.layers[i].trainable=False
		#for i,layer in enumerate(res.layers):
		#	res.layers[i].trainable=False
	if cnn_weights_path!=None:
		dense.load_weights(cnn_weights_path[0])
		xception.load_weights(cnn_weights_path[1])
 
	#print(dense.shape,xception.shape)
	#对dense_121和xception进行全局最大池化
	top1_model=GlobalMaxPooling2D(input_shape=(7,7,1024),data_format='channels_last')(dense.output)
	top2_model=GlobalMaxPooling2D(input_shape=(7,7,1024),data_format='channels_last')(xception.output)
	#top3_model=GlobalMaxPool2D(input_shape=res.output_shape)(res.outputs[0])
	
	print(top1_model.shape,top2_model.shape)
	#把top1_model和top2_model连接起来
	t=keras.layers.Concatenate(axis=1)([top1_model,top2_model])
	#第一个全连接层
	top_model=Dense(units=512,activation="relu")(t)
	top_model=Dropout(rate=0.5)(top_model)
	top_model=Dense(units=class_num,activation="softmax")(top_model)
	
	model=Model(inputs=input_layer,outputs=top_model)
 
	#加载全部的参数
	if all_weights_path:
		model.load_weights(all_weights_path)
	return model

这个bug我也是在服务器上跑的时候才出现的,找了半天,而实验室的cuda和cudnn又改不了,tensorflow无法升级,因此只能改代码了。

如下所示,是最后画出的模型图:(很长,底下没内容了)

以上这篇使用keras实现densenet和Xception的模型融合就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持。


推荐阅读
  • 本文介绍了如何在 DB2 环境中创建和删除数据库编目。创建编目是连接新数据库的必要步骤,涉及获取数据库连接信息、使用命令行工具进行配置,并验证连接的有效性。删除编目则用于移除不再需要的数据库连接。 ... [详细]
  • CentOS 7 磁盘与文件系统管理指南
    本文详细介绍了磁盘的基本结构、接口类型、分区管理以及文件系统格式化等内容,并提供了实际操作步骤,帮助读者更好地理解和掌握 CentOS 7 中的磁盘与文件系统管理。 ... [详细]
  • Windows服务与数据库交互问题解析
    本文探讨了在Windows 10(64位)环境下开发的Windows服务,旨在定期向本地MS SQL Server (v.11)插入记录。尽管服务已成功安装并运行,但记录并未正确插入。我们将详细分析可能的原因及解决方案。 ... [详细]
  • 探讨如何通过编程技术实现100个并发连接,解决线程创建顺序问题,并提供高效的并发测试方案。 ... [详细]
  • 本周信息安全小组主要进行了CTF竞赛相关技能的学习,包括HTML和CSS的基础知识、逆向工程的初步探索以及整数溢出漏洞的学习。此外,还掌握了Linux命令行操作及互联网工作原理的基本概念。 ... [详细]
  • 本文详细介绍了如何使用PHP检测AJAX请求,通过分析预定义服务器变量来判断请求是否来自XMLHttpRequest。此方法简单实用,适用于各种Web开发场景。 ... [详细]
  • 1:有如下一段程序:packagea.b.c;publicclassTest{privatestaticinti0;publicintgetNext(){return ... [详细]
  • 本文介绍了如何在具备多个IP地址的FTP服务器环境中,通过动态地址端口复用和地址转换技术优化网络配置。重点讨论了2Mb/s DDN专线连接、Cisco 2611路由器及内部网络地址规划。 ... [详细]
  • 深入理解Cookie与Session会话管理
    本文详细介绍了如何通过HTTP响应和请求处理浏览器的Cookie信息,以及如何创建、设置和管理Cookie。同时探讨了会话跟踪技术中的Session机制,解释其原理及应用场景。 ... [详细]
  • 创建第一个 MUI 移动应用项目
    本文将详细介绍如何使用 HBuilder 创建并运行一个基于 MUI 框架的移动应用项目。我们将逐步引导您完成项目的搭建、代码编写以及真机调试,帮助您快速入门移动应用开发。 ... [详细]
  • 深入理解 SQL 视图、存储过程与事务
    本文详细介绍了SQL中的视图、存储过程和事务的概念及应用。视图为用户提供了一种灵活的数据查询方式,存储过程则封装了复杂的SQL逻辑,而事务确保了数据库操作的完整性和一致性。 ... [详细]
  • 梦幻西游挖图奇遇:70级项链意外触发晶清诀,3000W轻松到手
    在梦幻西游中,挖图是一项备受欢迎的活动,无论是小宝图还是高级藏宝图,都吸引了大量玩家参与。通常情况下,小宝图的数量保证了稳定的收益,但特技装备的出现往往能带来意想不到的惊喜。本文讲述了一位玩家通过挖图获得70级晶清项链的故事,最终实现了3000W的游戏币逆袭。 ... [详细]
  • 本文探讨了 RESTful API 和传统接口之间的关键差异,解释了为什么 RESTful API 在设计和实现上具有独特的优势。 ... [详细]
  • 本文详细介绍了Java编程语言中的核心概念和常见面试问题,包括集合类、数据结构、线程处理、Java虚拟机(JVM)、HTTP协议以及Git操作等方面的内容。通过深入分析每个主题,帮助读者更好地理解Java的关键特性和最佳实践。 ... [详细]
  • 如何配置Unturned服务器及其消息设置
    本文详细介绍了Unturned服务器的配置方法和消息设置技巧,帮助用户了解并优化服务器管理。同时,提供了关于云服务资源操作记录、远程登录设置以及文件传输的相关补充信息。 ... [详细]
author-avatar
闹剧-豆腐渣_141
这个家伙很懒,什么也没留下!
PHP1.CN | 中国最专业的PHP中文社区 | DevBox开发工具箱 | json解析格式化 |PHP资讯 | PHP教程 | 数据库技术 | 服务器技术 | 前端开发技术 | PHP框架 | 开发工具 | 在线工具
Copyright © 1998 - 2020 PHP1.CN. All Rights Reserved | 京公网安备 11010802041100号 | 京ICP备19059560号-4 | PHP1.CN 第一PHP社区 版权所有