热门标签 | HotTags
当前位置:  开发笔记 > 编程语言 > 正文

使用FNIR进行驾驶任务期间的嗜睡检测

统计特征:信号峰值、信号平均值(0~7s的时间窗内计算),这些特征被正则化到0-1使用基于移动平均收敛发散(MACD)的算法识别飞行员的瞬时精神状态(不在任务上与在任务上)使用基于



统计特征:信号峰值 、信号平均值( 0~7s的时间窗内计算),这些特征被正则化到0-1

在这里插入图片描述

使用基于移动平均收敛发散(MACD)的算法识别飞行员的瞬时精神状态(不在任务上与在任务上)

使用基于支持向量机的分类器来区分任务难度(低与高工作状态)

分类器:SVM LDA

受试者:五名健康人,右利手,无精神疾病,平均年龄:30.8±2.9

参与者在实验开始前至少10小时不睡觉;例如,

受试者夜间不睡觉,实验在早晨进行。

探测区域:背外侧前额叶,两个发射器六个探测器

在这里插入图片描述

采样率:1.8Hz

原文:https://www.sogou.com/link?url=hedJjaC291Ob6hbu4VanvuYOB6VZSHam9plHkQ_v2SssxMeFVIOoXG4cHSdb60Qdh4W3YNbkGv8ROUQX7899rxCExW_6ERGI



推荐阅读
  • 本文节选自《NLTK基础教程——用NLTK和Python库构建机器学习应用》一书的第1章第1.2节,作者Nitin Hardeniya。本文将带领读者快速了解Python的基础知识,为后续的机器学习应用打下坚实的基础。 ... [详细]
  •     目标检测是计算机视觉一个非常重要的子任务。目标检测需要发现并准确定位自然图片中的物体。在2012年之前,目标检测主要基于手工设计的特征以及传统分类器。2012年以后,出现了 ... [详细]
  • 吴石访谈:腾讯安全科恩实验室如何引领物联网安全研究
    腾讯安全科恩实验室曾两次成功破解特斯拉自动驾驶系统,并远程控制汽车,展示了其在汽车安全领域的强大实力。近日,该实验室负责人吴石接受了InfoQ的专访,详细介绍了团队未来的重点方向——物联网安全。 ... [详细]
  • H5技术实现经典游戏《贪吃蛇》
    本文将分享一个使用HTML5技术实现的经典小游戏——《贪吃蛇》。通过H5技术,我们将探讨如何构建这款游戏的两种主要玩法:积分闯关和无尽模式。 ... [详细]
  • 本打算教一步步实现koa-router,因为要解释的太多了,所以先简化成mini版本,从实现部分功能到阅读源码,希望能让你好理解一些。希望你之前有读过koa源码,没有的话,给你链接 ... [详细]
  • 自然语言处理(NLP)——LDA模型:对电商购物评论进行情感分析
    目录一、2020数学建模美赛C题简介需求评价内容提供数据二、解题思路三、LDA简介四、代码实现1.数据预处理1.1剔除无用信息1.1.1剔除掉不需要的列1.1.2找出无效评论并剔除 ... [详细]
  • 深度学习: 目标函数
    Introduction目标函数是深度学习之心,是模型训练的发动机。目标函数(objectfunction)损失函数(lossfunction)代价函数(costfunction) ... [详细]
  • vmware workstation14嵌套安装kvm
    vmware workstation14嵌套安装kvm ... [详细]
  • 机器学习算法常见面试题目总结,Go语言社区,Golang程序员人脉社 ... [详细]
  • sklearn数据集库中的常用数据集类型介绍
    本文介绍了sklearn数据集库中常用的数据集类型,包括玩具数据集和样本生成器。其中详细介绍了波士顿房价数据集,包含了波士顿506处房屋的13种不同特征以及房屋价格,适用于回归任务。 ... [详细]
  • 浏览器中的异常检测算法及其在深度学习中的应用
    本文介绍了在浏览器中进行异常检测的算法,包括统计学方法和机器学习方法,并探讨了异常检测在深度学习中的应用。异常检测在金融领域的信用卡欺诈、企业安全领域的非法入侵、IT运维中的设备维护时间点预测等方面具有广泛的应用。通过使用TensorFlow.js进行异常检测,可以实现对单变量和多变量异常的检测。统计学方法通过估计数据的分布概率来计算数据点的异常概率,而机器学习方法则通过训练数据来建立异常检测模型。 ... [详细]
  • 本文探讨了互联网服务提供商(ISP)如何可能篡改或插入用户请求的数据流,并提供了有效的技术手段来防止此类劫持行为,确保网络环境的安全与纯净。 ... [详细]
  • 解析Java虚拟机HotSpot中的GC算法实现
    本文探讨了Java虚拟机(JVM)中HotSpot实现的垃圾回收(GC)算法,重点介绍了根节点枚举、安全点及安全区域的概念和技术细节,以及这些机制如何影响GC的效率和准确性。 ... [详细]
  • 视觉Transformer综述
    本文综述了视觉Transformer在计算机视觉领域的应用,从原始Transformer出发,详细介绍了其在图像分类、目标检测和图像分割等任务中的最新进展。文章不仅涵盖了基础的Transformer架构,还深入探讨了各类增强版Transformer模型的设计思路和技术细节。 ... [详细]
  • 对于初学者而言,搭建一个高效稳定的 Python 开发环境是入门的关键一步。本文将详细介绍如何利用 Anaconda 和 Jupyter Notebook 来构建一个既易于管理又功能强大的开发环境。 ... [详细]
author-avatar
PHP1.CN | 中国最专业的PHP中文社区 | DevBox开发工具箱 | json解析格式化 |PHP资讯 | PHP教程 | 数据库技术 | 服务器技术 | 前端开发技术 | PHP框架 | 开发工具 | 在线工具
Copyright © 1998 - 2020 PHP1.CN. All Rights Reserved | 京公网安备 11010802041100号 | 京ICP备19059560号-4 | PHP1.CN 第一PHP社区 版权所有