热门标签 | HotTags
当前位置:  开发笔记 > 后端 > 正文

实现搜索历史_如何快速实现精准的个性化搜索服务

简介:用户行为数据如何实时地应用在搜索服务中呢?怎样在1天内就可实现【精准的个性化搜索系统】搭建呢?今天小编将通过【阿里云开放搜索】中的三

简介: 用户行为数据如何实时地应用在搜索服务中呢? 怎样在1天内就可实现【精准的个性化搜索系统】搭建呢? 今天小编将通过【阿里云开放搜索】中的三大“个性化搜索算法模型”给大家详细介绍,希望给予您更多解决思路~

一、个性化排序应用

类目预测

类目预测是开放搜索里基于物品/内容的类目信息改善搜索效果的算法功能
类目预测根据用户的查询词来预测用户想要查询哪个类目的结果,结合排序表达式,可以使得更符合搜索意图的结果排序更靠前基本原理:把历史上搜过的query收集起来,结合query查询之后的点击行为数据,与类目下的物品信息联系起来,使用这些数据来训练模型,由模型来刻画query与类目之间的数据规律。

例如:不同用户搜索“华为”
有些行为意图搜索“配件”,有些意图是搜索“手机”,那根据用户的行为数据就可以通过类目进行判断,从而在排序效果上实现个性化展示;

bf6e6174b26404b101ba84e714a659fa.png

二、个性化搜索引导

搜索中引导--下拉提示

功能介绍
下拉提示是搜索服务的基础功能,在用户输入查询词的过程中,智能推荐候选query,提高用户输入效率,帮助用户尽快找到想要的内容。
下拉提示实现了基于用户文档内容的query智能抽取,可以通过中文前缀,拼音全拼,拼音首字母简拼查询以及汉字加拼音,分词后前缀,中文同音别字等查询下拉提示的候选query。

例如:不同用户在搜索框输入“包”,下拉提示都是不同的,优先展示该用户搜索过的query,从而增加业务转化的机会;

3163d1c442760ec08cdbd44682d97887.png
ea6f08fafeee0bd568d49ed05d0ea7f1.png

• query生成规则
针对过去N(默认7)天的历史query,结合该query的词权重,召回结果数,历史搜索次数,近一天查询是否有结果等条件,选出一些热门历史查询词,作为下拉提示的候选词。
系统支持两种规则生成候选query:抽取生成和原值保留。抽取生成:使用阿里nlp团队基于海量自然语言训练的分析器,对字段内容进行分词,抽取有意义的term进行组合,得到候选query,这种方式尽量保证生成的候选query能召回对应的文档。原值保留:该规则对字段内容不做分词处理,直接将其作为下拉提示的候选query。• 行业模板
根据不同行业数据特点提供了相应优化模板:通用行业模板,电商行业模板,内容行业模板• 干预功能
对数据源应用文档设置过滤条件;对候选query结果进行干预,包括黑名单和白名单;• 业务报表:
下拉提示进行的数据统计指标包括:核心指标,流量指标,点击指标, 引导搜索指标,Query分析指标,五个维度;
可以衡量下拉提示召回、排序、加购转化、内容丰富度等效果。

搜索前引导-热搜和底纹

• 功能介绍
热搜和底纹是一个完整搜索引擎必备的基本功能,通常占据着搜索框入口的重要位置,提供不可或缺的业务价值。

768044a6981b36686a1c339a5574e389.png

从用户的角度来看,热搜底纹一般可以满足如下的需求:

  1. 给我推荐一些优质的查询词;
  2. 想知道大家都搜了些什么;
  3. 既想看我感兴趣的内容,又想探索一些兴趣之外的内容;

从运营者的角度,热搜和底纹可以提供这样的价值:

  1. 哪些query被搜得最多,热门query是用户兴趣的风向标,通过分析热门query我们可以把握用户的兴趣走向,对制定运营策略;
  2. 给用户推荐一些优质query;
  3. 给用户推荐热门query,一方面兼顾用户体验,另一方面给部分次热门query增加曝光机会;

• 配置流程

8885a81249137bfed149309069891b42.png

• 业务报表
热搜底纹业务运营报表,可以清晰反映搜索引导结果的点击情况,衡量其召回、排序的效果和质量,再通过系统的评估服务,找到对应的问题原因和解决方案。



推荐阅读
  • 本文探讨了图像标签的多种分类场景及其在以图搜图技术中的应用,涵盖了从基础理论到实际项目实施的全面解析。 ... [详细]
  • 计算机学报精选论文概览(2020-2022)
    本文汇总了2020年至2022年间《计算机学报》上发表的若干重要论文,旨在为即将投稿的研究者提供参考。 ... [详细]
  • 本文节选自《NLTK基础教程——用NLTK和Python库构建机器学习应用》一书的第1章第1.2节,作者Nitin Hardeniya。本文将带领读者快速了解Python的基础知识,为后续的机器学习应用打下坚实的基础。 ... [详细]
  • 独家解析:深度学习泛化理论的破解之道与应用前景
    本文深入探讨了深度学习泛化理论的关键问题,通过分析现有研究和实践经验,揭示了泛化性能背后的核心机制。文章详细解析了泛化能力的影响因素,并提出了改进模型泛化性能的有效策略。此外,还展望了这些理论在实际应用中的广阔前景,为未来的研究和开发提供了宝贵的参考。 ... [详细]
  • 1:有如下一段程序:packagea.b.c;publicclassTest{privatestaticinti0;publicintgetNext(){return ... [详细]
  • 深入理解Java中的Collection接口与Collections工具类
    本文详细解析了Java中Collection接口和Collections工具类的区别与联系,帮助开发者更好地理解和使用这两个核心组件。 ... [详细]
  • 回顾与学习是进步的阶梯。再次审视卷积神经网络(CNNs),我对之前不甚明了的概念有了更深的理解。本文旨在分享这些新的见解,并探讨CNNs在图像识别和自然语言处理等领域中的实际应用。 ... [详细]
  • 京东AI创新之路:周伯文解析京东AI战略的独特之处
    2018年4月15日,京东在北京举办了人工智能创新峰会,会上首次公开了京东AI的整体布局和发展方向。此次峰会不仅展示了京东在AI领域的最新成果,还标志着京东AI团队的首次集体亮相。本文将深入探讨京东AI的发展策略及其与BAT等公司的不同之处。 ... [详细]
  • 青县:国产化妆刷的崛起之路
    河北省沧州市青县,凭借其独特的地理位置和丰富的产业资源,成功从韩资工厂的代工基地转型为国产化妆刷的重要生产基地。本文探讨了青县如何在短短几十年内,从一个默默无闻的小县城发展成为国内化妆刷行业的领头羊。 ... [详细]
  • 我整理了HMOV四大5G旗舰的参数,可依然没能拯救我的选择困难症
    伊瓢茕茕发自凹非寺量子位报道|公众号QbitAI报道了那么多发布会,依然无法选出要换的第一部5G手机。这不,随着华为P40系列发布,目前国 ... [详细]
  • 探讨低代码行业发展现状,分析其未能催生大型企业的原因,包括市场需求、技术局限及商业模型等方面。 ... [详细]
  • 开发笔记:empireCMS 帝国cms功能总结 ... [详细]
  • 拼多多的崛起之路
    随着4G通信技术的发展,互联网产品从PC端转向移动端,图像传输速度更快、更清晰,智能设备的应用提升了用户体验。移动互联网的普及为拼多多的崛起提供了时代背景。 ... [详细]
  • 在2019中国国际智能产业博览会上,百度董事长兼CEO李彦宏强调,人工智能应务实推进其在各行业的应用。随后,在“ABC SUMMIT 2019百度云智峰会”上,百度展示了通过“云+AI”推动AI工业化和产业智能化的最新成果。 ... [详细]
  • Swoole加密机制的安全性分析与破解可能性探讨
    本文深入分析了Swoole框架的加密机制,探讨了其在实际应用中的安全性,并评估了潜在的破解可能性。研究结果表明,尽管Swoole的加密算法在大多数情况下能够提供有效的安全保护,但在特定场景下仍存在被攻击的风险。文章还提出了一些改进措施,以增强系统的整体安全性。 ... [详细]
author-avatar
混迹潘_442
这个家伙很懒,什么也没留下!
PHP1.CN | 中国最专业的PHP中文社区 | DevBox开发工具箱 | json解析格式化 |PHP资讯 | PHP教程 | 数据库技术 | 服务器技术 | 前端开发技术 | PHP框架 | 开发工具 | 在线工具
Copyright © 1998 - 2020 PHP1.CN. All Rights Reserved | 京公网安备 11010802041100号 | 京ICP备19059560号-4 | PHP1.CN 第一PHP社区 版权所有