热门标签 | HotTags
当前位置:  开发笔记 > 编程语言 > 正文

【实践】端到端的OCR:验证码识别

验证码识别的思路非常暴力,大概就是这样:去噪+二值化字符分割每个字符识别验证码的难度在这3步上都有反应。比如噪声:加一条贯穿全图的曲线,比如网格线,还有图的一半是白底黑字,另一
验证码识别的思路非常暴力,大概就是这样:
  1. 去噪+二值化
  2. 字符分割
  3. 每个字符识别

验证码的难度在这3步上都有反应。比如

  1. 噪声:加一条贯穿全图的曲线,比如网格线,还有图的一半是白底黑字,另一半是黑底白字。
  2. 分割:字符粘连,7和4粘在一起。
  3. 识别:字符各种扭曲,各种旋转。

但相对而言,难度最大的是第2步,分割。所以就有人想,我能不能不做分割,就把验证码给识别了。深度学习擅长做端到端的学习,因此这个不分割就想识别的事情交给深度学习是最合适的。

基于CNN的验证码识别

基于CNN去识别验证码,其实就是一个图片的多标签学习问题。比如考虑一个4个数字组成的验证码,那么相当于每张图就有4个标签。那么我们把原始图片作为输入,4个标签作为输出,扔进CNN里,看看能不能收敛就行了。

下面这段代码定义了mxnet上的一个DataIter,我们用了python-captcha这个库来自动生成训练样本,所以可以假设训练样本是无穷多的。

class OCRIter(mx.io.DataIter):
def __init__(self, count, batch_size, num_label, height, width):
super(OCRIter, self).__init__()
self.captcha = ImageCaptcha(fonts=['./data/OpenSans-Regular.ttf'])
self.batch_size = batch_size
self.count = count
self.height = height
self.width = width
self.provide_data = [('data', (batch_size, 3, height, width))]
self.provide_label = [('softmax_label', (self.batch_size, num_label))]

def __iter__(self):
for k in range(self.count / self.batch_size):
data = []
label = []
for i in range(self.batch_size):
# 生成一个四位数字的随机字符串
num = gen_rand()
# 生成随机字符串对应的验证码图片
img = self.captcha.generate(num)
img = np.fromstring(img.getvalue(), dtype='uint8')
img = cv2.imdecode(img, cv2.IMREAD_COLOR)
img = cv2.resize(img, (self.width, self.height))
cv2.imwrite("./tmp" + str(i % 10) + ".png", img)
img = np.multiply(img, 1/255.0)
img = img.transpose(2, 0, 1)
data.append(img)
label.append(get_label(num))

data_all = [mx.nd.array(data)]
label_all = [mx.nd.array(label)]
data_names = ['data']
label_names = ['softmax_label']

data_batch = OCRBatch(data_names, data_all, label_names, label_all)
yield data_batch

def reset(self):
pass

下面这段代码是网络结构:

def get_ocrnet():
data = mx.symbol.Variable('data')
label = mx.symbol.Variable('softmax_label')
conv1 = mx.symbol.Convolution(data=data, kernel=(5,5), num_filter=32)
pool1 = mx.symbol.Pooling(data=conv1, pool_type="max", kernel=(2,2), stride=(1, 1))
relu1 = mx.symbol.Activation(data=pool1, act_type="relu")

conv2 = mx.symbol.Convolution(data=relu1, kernel=(5,5), num_filter=32)
pool2 = mx.symbol.Pooling(data=conv2, pool_type="avg", kernel=(2,2), stride=(1, 1))
relu2 = mx.symbol.Activation(data=pool2, act_type="relu")

conv3 = mx.symbol.Convolution(data=relu2, kernel=(3,3), num_filter=32)
pool3 = mx.symbol.Pooling(data=conv3, pool_type="avg", kernel=(2,2), stride=(1, 1))
relu3 = mx.symbol.Activation(data=pool3, act_type="relu")

flatten = mx.symbol.Flatten(data = relu3)
fc1 = mx.symbol.FullyConnected(data = flatten, num_hidden = 512)
fc21 = mx.symbol.FullyConnected(data = fc1, num_hidden = 10)
fc22 = mx.symbol.FullyConnected(data = fc1, num_hidden = 10)
fc23 = mx.symbol.FullyConnected(data = fc1, num_hidden = 10)
fc24 = mx.symbol.FullyConnected(data = fc1, num_hidden = 10)
fc2 = mx.symbol.Concat(*[fc21, fc22, fc23, fc24], dim = 0)
label = mx.symbol.transpose(data = label)
label = mx.symbol.Reshape(data = label, target_shape = (0, ))
return mx.symbol.SoftmaxOutput(data = fc2, label = label, name = "softmax")

上面这个网络要稍微解释一下。因为这个问题是一个有顺序的多label的图片分类问题。我们在fc1的层上面接了4个Full Connect层(fc21,fc22,fc23,fc24),用来对应不同位置的4个数字label。然后将它们Concat在一起。然后同时学习这4个label。目前用上面的网络训练,4位数字全部预测正确的精度可以达到95%左右(因为是无穷多的训练样本,所以只要能不断训练下去,精度还是可以提高的,只是我训练到95%左右就停止训练了)。

用CNN解决验证码识别有个问题,就是必须针对固定长度的验证码去做。如果长度不固定,或者是手写一行字的识别这种长度肯定不固定的问题,CNN就没办法了。这个时候就需要引入序列学习的模型了。

基于LSTM+CTC的验证码识别

LSTM+CTC被广泛的用在语音识别领域把音频解码成汉字,从这个角度说,OCR其实就是把图片解码成汉字,并没有太本质的区别。而且在整个过程中,不需要提前知道究竟要解码成几个字。

这个算法的思路是这样的。假设要识别的图片是80x30的图片,里面是一个长度为k的数字验证码。那么我们可以沿着x轴对图片进行切分,切成n个图片,作为LSTM的n个输入。在最极端的例子里,n=80。那么就是把图片的每一列都作为输入。LSTM有n个输入就会有n个输出,而这n个输出可以通过CTC计算和k个验证码标签之间的Loss,然后进行反向传播。

我们同样用python-captcha自动生成验证码作为训练样本,用如下的代码来定义网络结构:

def lstm_unroll(num_lstm_layer, seq_len,
num_hidden, num_label):
param_cells = []
last_states = []
for i in range(num_lstm_layer):
state = LSTMState(c=mx.sym.Variable("l%d_init_c" % i),
h=mx.sym.Variable("l%d_init_h" % i))
last_states.append(state)
assert(len(last_states) == num_lstm_layer)

# embeding layer
data = mx.sym.Variable('data')
label = mx.sym.Variable('label')
wordvec = mx.sym.SliceChannel(data=data, num_outputs=seq_len, squeeze_axis=1)

hidden_all = []
for seqidx in range(seq_len):
hidden = wordvec[seqidx]
for i in range(num_lstm_layer):
next_state = lstm(num_hidden, indata=hidden,
prev_state=last_states[i],
param=param_cells[i],
seqidx=seqidx, layeridx=i)
hidden = next_state.h
last_states[i] = next_state
hidden_all.append(hidden)

hidden_concat = mx.sym.Concat(*hidden_all, dim=0)
pred = mx.sym.FullyConnected(data=hidden_concat, num_hidden=11)

label = mx.sym.Reshape(data=label, target_shape=(0,))
label = mx.sym.Cast(data = label, dtype = 'int32')
sm = mx.sym.WarpCTC(data=pred, label=label, label_length = num_label, input_length = seq_len)
return sm

这里有2点需要注意的:

  1. 在一般的mxnet的lstm实现中,label需要转置,但是在warpctc的实现中不需要。
  2. label需要是int32的格式,需要cast。

关于CTC Loss的重要性,我试过不用CTC的两个不同想法:

  1. 用encode-decode模式。用80个输入做encode,然后decode成4个输出。实测效果很差。
  2. 4个label每个copy20遍,从而变成80个label。实测也很差。

用ctc loss的体会就是,如果input的长度远远大于label的长度,比如我这里是80和4的关系。那么一开始的收敛会比较慢。在其中有一段时间cost几乎不变。此刻一定要有耐心,最终一定会收敛的。在ocr识别的这个例子上最终可以收敛到95%的精度。


推荐阅读
  • 在Android开发中,使用Picasso库可以实现对网络图片的等比例缩放。本文介绍了使用Picasso库进行图片缩放的方法,并提供了具体的代码实现。通过获取图片的宽高,计算目标宽度和高度,并创建新图实现等比例缩放。 ... [详细]
  • 原文地址:https:www.cnblogs.combaoyipSpringBoot_YML.html1.在springboot中,有两种配置文件,一种 ... [详细]
  • 不同优化算法的比较分析及实验验证
    本文介绍了神经网络优化中常用的优化方法,包括学习率调整和梯度估计修正,并通过实验验证了不同优化算法的效果。实验结果表明,Adam算法在综合考虑学习率调整和梯度估计修正方面表现较好。该研究对于优化神经网络的训练过程具有指导意义。 ... [详细]
  • [大整数乘法] java代码实现
    本文介绍了使用java代码实现大整数乘法的过程,同时也涉及到大整数加法和大整数减法的计算方法。通过分治算法来提高计算效率,并对算法的时间复杂度进行了研究。详细代码实现请参考文章链接。 ... [详细]
  • 本文讨论了clone的fork与pthread_create创建线程的不同之处。进程是一个指令执行流及其执行环境,其执行环境是一个系统资源的集合。在调用系统调用fork创建一个进程时,子进程只是完全复制父进程的资源,这样得到的子进程独立于父进程,具有良好的并发性。但是二者之间的通讯需要通过专门的通讯机制,另外通过fork创建子进程系统开销很大。因此,在某些情况下,使用clone或pthread_create创建线程可能更加高效。 ... [详细]
  • 本文讨论了在手机移动端如何使用HTML5和JavaScript实现视频上传并压缩视频质量,或者降低手机摄像头拍摄质量的问题。作者指出HTML5和JavaScript无法直接压缩视频,只能通过将视频传送到服务器端由后端进行压缩。对于控制相机拍摄质量,只有使用JAVA编写Android客户端才能实现压缩。此外,作者还解释了在交作业时使用zip格式压缩包导致CSS文件和图片音乐丢失的原因,并提供了解决方法。最后,作者还介绍了一个用于处理图片的类,可以实现图片剪裁处理和生成缩略图的功能。 ... [详细]
  • IjustinheritedsomewebpageswhichusesMooTools.IneverusedMooTools.NowIneedtoaddsomef ... [详细]
  • 【shell】网络处理:判断IP是否在网段、两个ip是否同网段、IP地址范围、网段包含关系
    本文介绍了使用shell脚本判断IP是否在同一网段、判断IP地址是否在某个范围内、计算IP地址范围、判断网段之间的包含关系的方法和原理。通过对IP和掩码进行与计算,可以判断两个IP是否在同一网段。同时,还提供了一段用于验证IP地址的正则表达式和判断特殊IP地址的方法。 ... [详细]
  • 阿里Treebased Deep Match(TDM) 学习笔记及技术发展回顾
    本文介绍了阿里Treebased Deep Match(TDM)的学习笔记,同时回顾了工业界技术发展的几代演进。从基于统计的启发式规则方法到基于内积模型的向量检索方法,再到引入复杂深度学习模型的下一代匹配技术。文章详细解释了基于统计的启发式规则方法和基于内积模型的向量检索方法的原理和应用,并介绍了TDM的背景和优势。最后,文章提到了向量距离和基于向量聚类的索引结构对于加速匹配效率的作用。本文对于理解TDM的学习过程和了解匹配技术的发展具有重要意义。 ... [详细]
  • 本文介绍了使用cacti监控mssql 2005运行资源情况的操作步骤,包括安装必要的工具和驱动,测试mssql的连接,配置监控脚本等。通过php连接mssql来获取SQL 2005性能计算器的值,实现对mssql的监控。详细的操作步骤和代码请参考附件。 ... [详细]
  • 这是一个愚蠢的问题,但我只是对此感到好奇.假设我在Pythonshell,我有一些我查询的数据库对象.我做:db.query(的queryString)该查询在0xffdf842c ... [详细]
  • 基于dlib的人脸68特征点提取(眨眼张嘴检测)python版本
    文章目录引言开发环境和库流程设计张嘴和闭眼的检测引言(1)利用Dlib官方训练好的模型“shape_predictor_68_face_landmarks.dat”进行68个点标定 ... [详细]
  • 主要用到三种方法来判断:1.rangeOfString是否包含2.hasPrefix是否在前缀包含3.hasSuffix是否在末尾包含判断字符是否包含某字符串 ... [详细]
  • 欢乐的票圈重构之旅——RecyclerView的头尾布局增加
    项目重构的Git地址:https:github.comrazerdpFriendCircletreemain-dev项目同步更新的文集:http:www.jianshu.comno ... [详细]
  • EPPlus绘制刻度线的方法及示例代码
    本文介绍了使用EPPlus绘制刻度线的方法,并提供了示例代码。通过ExcelPackage类和List对象,可以实现在Excel中绘制刻度线的功能。具体的方法和示例代码在文章中进行了详细的介绍和演示。 ... [详细]
author-avatar
北漂123
这个家伙很懒,什么也没留下!
PHP1.CN | 中国最专业的PHP中文社区 | DevBox开发工具箱 | json解析格式化 |PHP资讯 | PHP教程 | 数据库技术 | 服务器技术 | 前端开发技术 | PHP框架 | 开发工具 | 在线工具
Copyright © 1998 - 2020 PHP1.CN. All Rights Reserved | 京公网安备 11010802041100号 | 京ICP备19059560号-4 | PHP1.CN 第一PHP社区 版权所有