热门标签 | HotTags
当前位置:  开发笔记 > 后端 > 正文

神经网络_吴恩达《机器学习》课程总结神经网络的学习

9.1代价函数(1)假设神经网络的训练样本有m个,每一个包含一组输入x和一组输出信号y,L表示神经网络的层数,Sl表示每一层的神经元个数,SL代表最后一层中处理单元的个数。则代价函数为(同样不对θ0正

9.1代价函数

(1)假设神经网络的训练样本有m个,每一个包含一组输入x和一组输出信号y,L表示神经网络的层数,Sl表示每一层的神经元个数,SL代表最后一层中处理单元的个数。

则代价函数为(同样不对θ0正则化):

技术分享图片

9.2反向传播算法

前向传播算法:

技术分享图片

用δ表示误差,则δ(4)=a(4)-y

前一层的误差为:

技术分享图片

技术分享图片

再前一层的误差为:

技术分享图片

输入层不存在误差。

每一层有了误差之后,即可分别进行求偏导,然后更新θ。

技术分享图片

9.3反向传播算法的直观理解

9.4实现注意:展开参数

9.5梯度检验

用某点领域的两个点的连线的斜率作为该点的估算值,然后用该值与神经网络计算出来的值作比较。

技术分享图片

9.6随机初始化

参数的初始化应该随机的,如果是相同的值的话,第二层的所有激活单元都会有相同的值,后面也类似。

9.7综合起来

使用神经网络时的步骤:

(1)网络结构:第一件要做的事是选择网络结构,即决定选择多少层以及决定每层分别有多少单元。

第一层的单元数即为我们训练集的特征数量。

最后一层的单元数是我们训练集的结果的类的数量。

(2)训练神经网络:

1.参数的随机初始化;

2.利用正向传播方法计算所有的hθ(x);

3.编写计算代价函数J的代码;

4.利用反向传播方法计算所有的偏导数;

5.利用数值检验方法检验这些偏导数;

6.使用优化算法来最小化代价函数。

9.8自动驾驶

略。

 



推荐阅读
  • 《计算机视觉:算法与应用》第二版初稿上线,全面更新迎接未来
    经典计算机视觉教材《计算机视觉:算法与应用》迎来了其第二版,现已开放初稿下载。本书由Facebook研究科学家Richard Szeliski撰写,自2010年首版以来,一直是该领域的标准参考书。 ... [详细]
  • 李宏毅机器学习笔记:无监督学习之线性方法
    无监督学习主要涵盖两大类别:一是聚类与降维,旨在简化数据结构;二是生成模型,用于从编码生成新的数据样本。本文深入探讨了这些技术的具体应用和理论基础。 ... [详细]
  • 吴恩达推出TensorFlow实践课程,Python基础即可入门,四个月掌握核心技能
    量子位报道,deeplearning.ai最新发布了TensorFlow实践课程,适合希望使用TensorFlow开发AI应用的学习者。该课程涵盖机器学习模型构建、图像识别、自然语言处理及时间序列预测等多个方面。 ... [详细]
  • 强人工智能时代,区块链的角色与前景
    随着强人工智能的崛起,区块链技术在新的技术生态中扮演着怎样的角色?本文探讨了区块链与强人工智能之间的互补关系及其在未来技术发展中的重要性。 ... [详细]
  • 本文探讨了图像标签的多种分类场景及其在以图搜图技术中的应用,涵盖了从基础理论到实际项目实施的全面解析。 ... [详细]
  • 大数据时代的机器学习:人工特征工程与线性模型的局限
    本文探讨了在大数据背景下,人工特征工程与线性模型的应用及其局限性。随着数据量的激增和技术的进步,传统的特征工程方法面临挑战,文章提出了未来发展的可能方向。 ... [详细]
  • 京东AI创新之路:周伯文解析京东AI战略的独特之处
    2018年4月15日,京东在北京举办了人工智能创新峰会,会上首次公开了京东AI的整体布局和发展方向。此次峰会不仅展示了京东在AI领域的最新成果,还标志着京东AI团队的首次集体亮相。本文将深入探讨京东AI的发展策略及其与BAT等公司的不同之处。 ... [详细]
  • 本文详细记录了作者从7月份的提前批到9、10月份正式批的秋招经历,包括各公司的面试流程、技术问题及HR面的常见问题。通过这次秋招,作者深刻体会到了技术积累和面试准备的重要性。 ... [详细]
  • 本文详细介绍了 TensorFlow 的入门实践,特别是使用 MNIST 数据集进行数字识别的项目。文章首先解析了项目文件结构,并解释了各部分的作用,随后逐步讲解了如何通过 TensorFlow 实现基本的神经网络模型。 ... [详细]
  • 在Word中编辑复杂的数学公式常常让人感到头疼,尤其是处理偏微分方程(PDE)等高级数学内容时。然而,最近GitHub上的一个开源项目latexify_py展示了如何利用Python轻松生成LaTeX数学公式,极大地简化了这一过程。 ... [详细]
  • 机器学习算法(五)—— 最优化方法:梯度下降
    一、什么是梯度下降梯度下降是迭代法的一种,可以用于求解最小二乘问题(线性和非线性都可以)。在求解机器学习算法的模型参数,即无约束优化问题时,梯度下降(GradientDescent ... [详细]
  • 本文深入探讨了数据挖掘领域内的十个经典算法,包括但不限于C4.5决策树、K-Means聚类、支持向量机等。这些算法不仅在理论上有深厚的数学基础,也在实践中展现出强大的应用价值。 ... [详细]
  • 深入解析Bagging与Boosting算法原理及应用
    本文通过详细分析Bagging与Boosting两种集成学习技术的基本概念、工作原理及其在实际项目中的应用案例,帮助读者深入了解这两种强大的机器学习方法。同时,提供相关资源链接以供进一步学习。 ... [详细]
  • 在中国医疗行业面临高度监管和市场垄断的背景下,医疗领域的创新面临诸多挑战。本文通过探讨技术变革与商业模式的结合,为医疗AI的未来发展提供了新的视角。 ... [详细]
  • 利用Dlib进行高效的人脸特征提取与识别
    本文介绍了Dlib库,一个集成了多种机器学习算法的C++工具包,特别适用于需要处理复杂任务的应用场景。Dlib不仅支持机器人技术、嵌入式系统开发、移动应用及高性能计算环境,还提供了强大的人脸检测与特征提取功能。 ... [详细]
author-avatar
消失得珍贵_Cjh_662
这个家伙很懒,什么也没留下!
PHP1.CN | 中国最专业的PHP中文社区 | DevBox开发工具箱 | json解析格式化 |PHP资讯 | PHP教程 | 数据库技术 | 服务器技术 | 前端开发技术 | PHP框架 | 开发工具 | 在线工具
Copyright © 1998 - 2020 PHP1.CN. All Rights Reserved | 京公网安备 11010802041100号 | 京ICP备19059560号-4 | PHP1.CN 第一PHP社区 版权所有