热门标签 | HotTags
当前位置:  开发笔记 > 编程语言 > 正文

【神经网络与深度学习】【C/C++】比较OpenBLAS,IntelMKL和Eigen的矩阵相乘性能

     对于机器学习的很多问题来说,计算的瓶颈往往在于大规模以及频繁的矩阵运算,主要在于以下两方面:(DenseSparse)Matrix–Vectorproduct(Dense

        对于机器学习的很多问题来说,计算的瓶颈往往在于大规模以及频繁的矩阵运算,主要在于以下两方面:

  • (Dense/Sparse) Matrix – Vector product
  • (Dense/Sparse) Matrix – Dense Matrix product

        如何使机器学习算法运行更高效摆在我们面前,很多人都会在代码中直接采用一个比较成熟的矩阵运算数学库,面对繁多的数学库,选择一个合适的库往往会令人头疼,这既跟你的运算环境有关,也跟你的运算需求有关,不是每个库都能完胜的。

        这篇文章的主要目的就是比较几个常见的BLAS库的矩阵运算性能,分别是

  1. EIGEN: 是一个线性算术的C++模板库。功能强大、快速、优雅以及支持多平台,可以使用该库来方便处理一些矩阵的操作,达到类似matlab那样的快捷。 需要定义 EIGEN_NO_DEBUG 阻止运行时assertion。编译单线程版本需要开启 -DEIGEN_DONT_PARALLELIZE. 在试验中,我们采用 EIGEN 原生 BLAS 实现。
  2. Intel MKL: 英特尔数学核心函数库是一套经过高度优化和广泛线程化的数学例程,专为需要极致性能的科学、工程及金融等领域的应用而设计。它可以为当前及下一代英特尔处理器提供性能优化,包括更出色地与 Microsoft Visual Studio、Eclipse和XCode相集成。英特尔 MKL 支持完全集成英特尔兼容性 OpenMP 运行时库,以实现更出色的 Windows/Linux 跨平台兼容性。在试验中的多线程版本需要链接到 mkl_gnu_thread,而不是 mkl_intel_thread,单线程版本需要链接到 mkl_sequential_thread。
  3. OpenBLAS: 是一个高性能多核 BLAS 库,是 GotoBLAS2 1.13 BSD 版本的衍生版。OpenBLAS 的编译依赖系统环境,并且没有原生单线程版本,在实验这哦那个,通过设置 OMP_NUM_THREADS=1 来模拟单线程版本,可能会带来一点点的性能下降。

        每个测试程序的编译都采用 “-O4 -msse2 -msse3 -msse4” 优化, 通过设置 OMP_NUM_THREADS 来控制使用的线程数量. 除了 OpenBLAS,其他两个库的测试程序都分别有单线程和多线程的编译版本。

        如果MKL编译出现问题,建议参考Intel Math Kernel Library Link Line Advisor

  • 单线程版本

        我在实验中进行了一系列的非稀疏矩阵相乘运算,矩阵规模也逐渐增大,单线程的运行时间如下表所示,其中采用的测试轮数为5轮,其中红色表示性能最好的一组实验结果。

Matrix-Dimension Eigen MKL OpenBLAS
500 0.04159 0.03122 0.03058
1000 0.31789 0.24339 0.23730
1500 1.04589 0.81445 0.79869
2000 2.37567 1.92036 1.87102
2500 4.68266 3.78569 3.64548
3000 8.28073 6.42630 6.29797
3500 13.07470 10.25096 9.98417
4000 19.34550 15.21931 14.87500
4500 27.52767 21.45024 21.18227
5000 37.67552  29.31631 29.07229

 【神经网络与深度学习】【C/C++】比较OpenBLAS,Intel MKL和Eigen的矩阵相乘性能

        从图中可以看出,OpenBLAS的性能最好,MKL的表现也很不错,而EIGEN的表现却很糟糕。

  • 多线程版本

        在多线程的测试中,我们采用多个CPU核心来做矩阵乘法运算,所有的结果也同样采用5轮训练,我们采用的CPU核数分别是8,16,32,48。

  • Cores = 8
Matrix-Dimension Eigen MKL OpenBLAS
1000 0.05658 0.03955 0.06468
2000 0.34981 0.26200 0.23879
3000 1.20781 0.85449 0.80737
4000 2.65490 1.90273 1.88366
5000 5.03304 3.73005 3.67966
6000 8.78654 6.52766 6.31980
7000 13.55611 10.13758 10.07120
8000 19.81634 15.03530 14.89440
9000 29.11329 21.54359 21.26992
10000 39.01563 29.93075 29.22034

【神经网络与深度学习】【C/C++】比较OpenBLAS,Intel MKL和Eigen的矩阵相乘性能

  • Cores = 16
Matrix-Dimension Eigen MKL OpenBLAS
1000 0.05708 0.02185 0.03897
2000 0.26694 0.13807 0.30461
3000 0.70686 0.43692 0.93511
4000 1.45129 0.97720 2.06761
5000 2.59477 1.90665 2.49280
6000 5.43438 3.30945 7.01299
7000 8.01124 5.17896 6.84496
8000 11.22280 7.81439 12.99240
9000 15.15625 11.08906 21.82488
10000 19.91151 15.22039 30.86908

【神经网络与深度学习】【C/C++】比较OpenBLAS,Intel MKL和Eigen的矩阵相乘性能

  • Cores = 32
Matrix-Dimension Eigen MKL OpenBLAS
1000 0.04003 0.02792 0.02244
2000 0.51213 0.14363 0.16990
3000 1.13647 0.51105 0.54635
4000 1.58793 1.10219 1.26401
5000 2.88341 2.07923 2.48735
6000 5.92779 3.42785 4.26794
7000 7.91650 5.32176 6.69391
8000 11.96467 7.65395 9.98951
9000 17.45420 10.28328 14.14108
10000 23.31314 15.10077 19.34171

【神经网络与深度学习】【C/C++】比较OpenBLAS,Intel MKL和Eigen的矩阵相乘性能

  • Cores = 40
Matrix-Dimension Eigen MKL OpenBLAS
1000 0.03691 0.02877 0.01779
2000 0.37739 0.14037 0.13655
3000 0.61183 0.41057 0.44113
4000 2.43670 1.02625 1.01414
5000 3.18099 1.91092 1.97898
6000 8.24002 2.96157 3.40685
7000 11.59889 4.68312 5.38634
8000 9.50613 6.98434 7.95971
9000 14.83066 9.60891 11.37585
10000 23.67187 15.52151 15.52680

【神经网络与深度学习】【C/C++】比较OpenBLAS,Intel MKL和Eigen的矩阵相乘性能

  • Cores = 48
Matrix-Dimension Eigen MKL OpenBLAS
1000 0.03635 0.02398 0.01548
2000 0.36417 0.13408 0.11496
3000 2.32388 0.39291 0.36669
4000 2.32030 1.13244 0.85790
5000 2.08269 1.75812 1.66785
6000 8.70766 2.98694 2.85609
7000 8.23543 4.62340 4.53257
8000 21.18603 6.68886 6.72820
9000 19.86504 9.59635 9.50597
10000 16.10920 13.13038 13.04432

【神经网络与深度学习】【C/C++】比较OpenBLAS,Intel MKL和Eigen的矩阵相乘性能

可以看出,MKL和OpenBLAS都提供了比较好的性能,MKL性能还更好一点,在各别多线程条件下了,可能某些原因或者我机器设置的问题,出现了各别性能异常,比如小矩阵运算时间反倒比大矩阵运算长,或者更多的线程却不能提供更好的性能。这些情况后面可能还需要查一查。

  • 伸缩性

        另外,我也测试了使用不同的cpu核数对性能的影响,下面两个图描述了把cpu从1增加到20的条件下,5000×5000的矩阵相乘的时间开销和加速比。

  • 结论

        就我的测试环境而言,Intel MKL 和 OpenBLAS 似乎是矩阵相乘运算方面性能最佳的 BLAS 库,在多核以及不同规模的矩阵方面都具有较好的伸展性和稳定性,而对于单线程情况,OpenBLAS相比 MKL 在性能上有一定提升。

        本文参考gcdart的文章,代码可以下载。


推荐阅读
  • 从2019年AI顶级会议最佳论文,探索深度学习的理论根基与前沿进展 ... [详细]
  • 在机器学习领域,深入探讨了概率论与数理统计的基础知识,特别是这些理论在数据挖掘中的应用。文章重点分析了偏差(Bias)与方差(Variance)之间的平衡问题,强调了方差反映了不同训练模型之间的差异,例如在K折交叉验证中,不同模型之间的性能差异显著。此外,还讨论了如何通过优化模型选择和参数调整来有效控制这一平衡,以提高模型的泛化能力。 ... [详细]
  • Python 数据可视化实战指南
    本文详细介绍如何使用 Python 进行数据可视化,涵盖从环境搭建到具体实例的全过程。 ... [详细]
  • 从0到1搭建大数据平台
    从0到1搭建大数据平台 ... [详细]
  • 通过使用CIFAR-10数据集,本文详细介绍了如何快速掌握Mixup数据增强技术,并展示了该方法在图像分类任务中的显著效果。实验结果表明,Mixup能够有效提高模型的泛化能力和分类精度,为图像识别领域的研究提供了有价值的参考。 ... [详细]
  • Spring – Bean Life Cycle
    Spring – Bean Life Cycle ... [详细]
  • [c++基础]STL
    cppfig15_10.cppincludeincludeusingnamespacestd;templatevoidprintVector(constvector&integer ... [详细]
  • 双指针法在链表问题中应用广泛,能够高效解决多种经典问题,如合并两个有序链表、合并多个有序链表、查找倒数第k个节点等。本文将详细介绍这些应用场景及其解决方案。 ... [详细]
  • 独家解析:深度学习泛化理论的破解之道与应用前景
    本文深入探讨了深度学习泛化理论的关键问题,通过分析现有研究和实践经验,揭示了泛化性能背后的核心机制。文章详细解析了泛化能力的影响因素,并提出了改进模型泛化性能的有效策略。此外,还展望了这些理论在实际应用中的广阔前景,为未来的研究和开发提供了宝贵的参考。 ... [详细]
  • 斯坦福大学公开课:利用神经网络技术实现自动驾驶的案例分析
    斯坦福大学的公开课深入探讨了如何利用神经网络技术实现自动驾驶。课程中通过实例展示了汽车如何通过学习算法自主驾驶。具体而言,课程展示了一幅图解,其中左下角显示了汽车前方的实时路况图像,而左上角则呈现了一个水平的菜单栏,用于展示系统处理和决策的过程。这一案例详细解析了神经网络在自动驾驶中的应用,为学生提供了宝贵的实践参考。 ... [详细]
  • VC维在机器学习中的应用与解析
    VC维在机器学习中的应用与解析VC维是指在机器学习中,一个假设空间能够正确分类的最大样本数量。具体而言,如果一个假设空间能够将N个样本以所有可能的 \(2^N\) 种方式完全分开,则称该假设空间具有N的VC维。VC维是衡量模型复杂度的重要指标,对于理解模型的泛化能力和过拟合风险具有重要意义。本文详细探讨了VC维的定义、计算方法及其在机器学习中的应用,并通过实例分析展示了其在模型选择和评估中的关键作用。 ... [详细]
  • 投融资周报 | Circle 达成 4 亿美元融资协议,唯一艺术平台 A 轮融资超千万美元 ... [详细]
  • 在《Python编程基础》课程中,我们将深入探讨Python中的循环结构。通过详细解析for循环和while循环的语法与应用场景,帮助初学者掌握循环控制语句的核心概念和实际应用技巧。此外,还将介绍如何利用循环结构解决复杂问题,提高编程效率和代码可读性。 ... [详细]
  • Hired网站最新发布的开发者调查显示,Python 语言继续受到开发者的广泛欢迎,而 PHP 则被评为最不受欢迎的语言。该报告基于 Hired 数据科学团队对 13 个城市中 9800 名开发者的调查数据,深入分析了当前编程语言的使用趋势和开发者偏好。此外,报告还探讨了其他热门语言如 JavaScript 和 Java 的表现,并提供了对技术招聘市场的洞见。 ... [详细]
  • 基于OpenCV的图像拼接技术实践与示例代码解析
    图像拼接技术在全景摄影中具有广泛应用,如手机全景拍摄功能,通过将多张照片根据其关联信息合成为一张完整图像。本文详细探讨了使用Python和OpenCV库实现图像拼接的具体方法,并提供了示例代码解析,帮助读者深入理解该技术的实现过程。 ... [详细]
author-avatar
欣儿2502862161
这个家伙很懒,什么也没留下!
PHP1.CN | 中国最专业的PHP中文社区 | DevBox开发工具箱 | json解析格式化 |PHP资讯 | PHP教程 | 数据库技术 | 服务器技术 | 前端开发技术 | PHP框架 | 开发工具 | 在线工具
Copyright © 1998 - 2020 PHP1.CN. All Rights Reserved | 京公网安备 11010802041100号 | 京ICP备19059560号-4 | PHP1.CN 第一PHP社区 版权所有