import torch from torch import nn classNet(nn.Module): def__init__(self): super().__init__() self.fc1 = nn.Linear(3*4*4,3*5*5) self.conv1 = nn.Sequential( nn.Conv2d(3,4,1,1),# conv1.0 nn.BatchNorm2d(4),# conv1.1 nn.LeakyReLU(),# conv1.2 nn.Conv2d(4,4,3,1),# conv1.3 nn.BatchNorm2d(4),# conv1.4 nn.LeakyReLU(),# conv1.5 ) self.fc2 = nn.Linear(4*3*3,10) defforward(self, entry): entry = entry.reshape(-1,3*4*4) fc1_out = self.fc1(entry) fc1_out = fc1_out.reshape(-1,3,5,5) conv1_out = self.conv1(fc1_out) conv1_out = conv1_out.reshape(-1,4*3*3) fc2_out = self.fc2(conv1_out) return fc2_out if __name__ =='__main__': x = torch.Tensor(2,3,4,4) net = Net() out = net(x) print('%14s : %s'%('out.shape', out.shape)) print('---------------华丽丽的分隔线---------------') # -------------方法1-------------- sum_ =0 for name, param in net.named_parameters(): mul =1 for size_ in param.shape: mul *= size_ # 统计每层参数个数 sum_ += mul # 累加每层参数个数 print('%14s : %s'%(name, param.shape))# 打印参数名和参数数量 # print('%s' % param) # 这样可以打印出参数,由于过多,我就不打印了 print('参数个数:', sum_)# 打印参数量
# -------------方法2-------------- for param in net.parameters(): print(param.shape) # print(param) # -------------方法3-------------- params =list(net.parameters()) for param in params: print(param.shape) # print(param)
Explore how Matterverse is redefining the metaverse experience, creating immersive and meaningful virtual environments that foster genuine connections and economic opportunities. ...
[详细]