热门标签 | HotTags
当前位置:  开发笔记 > 编程语言 > 正文

深度学习(17)——度量学习

深度学习(17)——度量学习文章目录深度学习(17)——度量学习一、What?二、paired-basedloss1.Con


深度学习(17)—— 度量学习

文章目录


  • 深度学习(17)—— 度量学习
    • 一、What?
    • 二、paired-based loss
      • 1. Contrastive loss
      • 2. Triplet loss
      • 3. Triplet center loss
      • 4.N-pair loss
      • 5. Quadruplet loss
      • 6. Lifted Structure Loss





昨天讨论的时候一个大佬提到了Metric Learning,听他讲了一下大致思路,觉得有点意思,所以下来了解了一下,简单记录

一、What?

度量学习是一种空间映射的方法,它可以学习到一种特征空间(Embedding),会将所有的数据转化为一个共同空间中的特征向量,在这些向量中,越相似样本的特征向量距离越近,不相似的样本的特征向量之间距离大,将数据进行区分。


二、paired-based loss


1. Contrastive loss

Contrastive loss能够让正样本(越相似的样本)对尽可能的近,负样本对尽可能的远,这样可以增大类间差异,减小类内差异。但是其需要指定一个固定的margin,因为margin是固定的,所以这里就隐含了一个很强的假设,即每个类目的样本分布都是相同的,不过一般情况下这个强假设未必成立。

例如,有一个数据集有三种动物,分别是狗、狼 、猫,直观上狗和狼比较像,狗和猫的差异比较大,所以狗狼之间的margin应该小于狗猫之间的margin,但是Contrastive loss使用的是固定的margin,如果margin设定的比较大,模型可能无法很好的区分狗和狼,而margin设定的比较小的话,可能又无法很好的区分狗和猫。


2. Triplet loss

Triplet Loss的思想是让负样本对之间的距离大于正样本对之间的距离,在训练过的过程中同时选取一对正样本对和负样本对,且正负样本对中有一个样本是相同的。仍旧以前面的狗、狼、猫数据为例,首先随机选取一个样本,此样本称之为anchor 样本,假设此样本类别为狗,然后选取一个与anchor样本同类别的样本(另一个狗狗),称之为positive,并让其与anchor样本组成一个正样本对(anchor-positive);再选取一个与anchor不同类别的样本(猫),称之为negative,让其与anchor样本组成一个负样本对(anchor-negative)。
在这里插入图片描述
当负样本对之间的距离比正样本对之间的距离大m的时候,loss为0 ,认为当前模型已经学的不错了,所以不对模型进行更新。


3. Triplet center loss

Triplet Center loss的思想非常简单,原来的Triplet是计算anchor到正负样本之间的距离,现在Triplet Center是计算anchor到正负样本所在类别的中心的距离。类别中心就是该类别所有样本embedding向量的中心
在这里插入图片描述


4.N-pair loss

N-pair loss选取了多个负样本对,即一对正样本对,选取其他所有不同类别的样本作为负样本与其组合得到负样本对。如果数据集中有N个类别,则每个正样本对Yii 都对应了N-1个负样本对。
在这里插入图片描述


5. Quadruplet loss

Quadruplet loss由两部分组成:


  • 一部分就是正常的triplet loss,这部分loss能够让模型区分出正样本对和负样本对之间的相对距离。
  • 另一部分是正样本对和其他任意负样本对之前的相对距离。这一部分约束可以理解成最小的类间距离都要大于类内距离,不管这些样本对是否有同样的anchor
    在这里插入图片描述

6. Lifted Structure Loss

Lifted Structure loss的思想是对于一对正样本对而言,不去区分这个样本对中谁是anchor,谁是positive,而是让这个正样本对中的每个样本与其他所有负样本的距离都大于给定的阈值。此方法能够充分的利用mini-batch中的所有样本,挖掘出所有的样本对。







推荐阅读
  • 生成式对抗网络模型综述摘要生成式对抗网络模型(GAN)是基于深度学习的一种强大的生成模型,可以应用于计算机视觉、自然语言处理、半监督学习等重要领域。生成式对抗网络 ... [详细]
  • C# 7.0 新特性:基于Tuple的“多”返回值方法
    本文介绍了C# 7.0中基于Tuple的“多”返回值方法的使用。通过对C# 6.0及更早版本的做法进行回顾,提出了问题:如何使一个方法可返回多个返回值。然后详细介绍了C# 7.0中使用Tuple的写法,并给出了示例代码。最后,总结了该新特性的优点。 ... [详细]
  • 本文介绍了为什么要使用多进程处理TCP服务端,多进程的好处包括可靠性高和处理大量数据时速度快。然而,多进程不能共享进程空间,因此有一些变量不能共享。文章还提供了使用多进程实现TCP服务端的代码,并对代码进行了详细注释。 ... [详细]
  • 本文讨论了clone的fork与pthread_create创建线程的不同之处。进程是一个指令执行流及其执行环境,其执行环境是一个系统资源的集合。在调用系统调用fork创建一个进程时,子进程只是完全复制父进程的资源,这样得到的子进程独立于父进程,具有良好的并发性。但是二者之间的通讯需要通过专门的通讯机制,另外通过fork创建子进程系统开销很大。因此,在某些情况下,使用clone或pthread_create创建线程可能更加高效。 ... [详细]
  • 背景应用安全领域,各类攻击长久以来都危害着互联网上的应用,在web应用安全风险中,各类注入、跨站等攻击仍然占据着较前的位置。WAF(Web应用防火墙)正是为防御和阻断这类攻击而存在 ... [详细]
  • 深入解析Linux下的I/O多路转接epoll技术
    本文深入解析了Linux下的I/O多路转接epoll技术,介绍了select和poll函数的问题,以及epoll函数的设计和优点。同时讲解了epoll函数的使用方法,包括epoll_create和epoll_ctl两个系统调用。 ... [详细]
  • 建立分类感知器二元模型对样本数据进行分类
    本文介绍了建立分类感知器二元模型对样本数据进行分类的方法。通过建立线性模型,使用最小二乘、Logistic回归等方法进行建模,考虑到可能性的大小等因素。通过极大似然估计求得分类器的参数,使用牛顿-拉菲森迭代方法求解方程组。同时介绍了梯度上升算法和牛顿迭代的收敛速度比较。最后给出了公式法和logistic regression的实现示例。 ... [详细]
  • 本博文基于《Amalgamationofproteinsequence,structureandtextualinformationforimprovingprote ... [详细]
  • 【论文】ICLR 2020 九篇满分论文!!!
    点击上方,选择星标或置顶,每天给你送干货!阅读大概需要11分钟跟随小博主,每天进步一丢丢来自:深度学习技术前沿 ... [详细]
  • 知识图谱表示概念:知识图谱是由一些相互连接的实体和他们的属性构成的。换句话说,知识图谱是由一条条知识组成,每条知识表示为一个SPO三元组(Subject-Predicate-Obj ... [详细]
  • 3年半巨亏242亿!商汤高估了深度学习,下错了棋?
    转自:新智元三年半研发开支近70亿,累计亏损242亿。AI这门生意好像越来越不好做了。近日,商汤科技已向港交所递交IPO申请。招股书显示& ... [详细]
  • 前端库Bootstrap框架:「11]使用 span 创建行内元素
    前端库Bootstrap框架:「11]使用 span 创建行内元素 ... [详细]
  • 直击热门考点——结构体内存对齐
    原标题:直击热门考点——结构体内存对齐文章目录前言一、引例 ... [详细]
  • 本文介绍了一种轻巧方便的工具——集算器,通过使用集算器可以将文本日志变成结构化数据,然后可以使用SQL式查询。集算器利用集算语言的优点,将日志内容结构化为数据表结构,SPL支持直接对结构化的文件进行SQL查询,不再需要安装配置第三方数据库软件。本文还详细介绍了具体的实施过程。 ... [详细]
  • 本文介绍了一种图的存储和遍历方法——链式前向星法,该方法在存储带边权的图时时间效率比vector略高且节省空间。然而,链式前向星法存图的最大问题是对一个点的出边进行排序去重不容易,但在平行边无所谓的情况下选择这个方法是非常明智的。文章还提及了图中搜索树的父子关系一般不是很重要,同时给出了相应的代码示例。 ... [详细]
author-avatar
Cher麻花
这个家伙很懒,什么也没留下!
PHP1.CN | 中国最专业的PHP中文社区 | DevBox开发工具箱 | json解析格式化 |PHP资讯 | PHP教程 | 数据库技术 | 服务器技术 | 前端开发技术 | PHP框架 | 开发工具 | 在线工具
Copyright © 1998 - 2020 PHP1.CN. All Rights Reserved | 京公网安备 11010802041100号 | 京ICP备19059560号-4 | PHP1.CN 第一PHP社区 版权所有