点击上方,选择星标或置顶,每天给你送干货!
阅读大概需要4分钟
跟随小博主,每天进步一丢丢
来自:NLP太难了 公众号
深度学习下,中文分词是否还有必要?
原文:
Is Word Segmentation Necessary for Deep Learning of Chinese
知乎讨论:
https://zhuanlan.zhihu.com/p/65865071
https://www.zhihu.com/question/324672243/answer/715928859
Abstract
作者基于word级模型(word-based model,需要分词)和char级模型(char-based model,不需要分词),在四个NLP任务上做对比实验(语言模型、机器翻译、句子匹配和文本分类)。
实验结果显示,基于char级模型效果总是比word级模型效果好,作者基于这些实验结果给出了一些原因。
Experiments
作者在基于中文语料的四个NLP任务(语言模型、机器翻译、句子匹配和文本分类)上进行了对比实验,比较word级模型和char级模型在这四个任务上的效果。
1. 语言模型(Language Modeling)
实验结果:
2. 机器翻译(Machine Translation)
实验结果:
3. 句子匹配/释义(Sentence Matching/Paraphrase )
4. 文本分类(Text Classification)
word级模型存在的缺陷
作者基于以上实验,探讨了word级模型可能存在导致效果下降的原因。
1. 数据稀疏(Data Sparsity)
在word级模型中,很多词出现的频率很低,导致产生了数据稀疏。而对于模型来说,要学习一个词的语义信息,需要词的数量需要达到一定量才行。因此,在word级模型中,神经网络并没有充分学习到很多单词的语义信息。
2. OOV词(Out-of-Vocabulary Words)
我们把不存在于词汇表中的词称为Out-of-Vocabulary Words,即OOV词。通常使用UNK这个记号来表示这些词。也可以对OOV词设置一个词频门限(frequency threshold),这样出现次数低于该门槛的词就称为OOV词。对于OOV词来说,因都将其归类为了UNK,我们就拿一个word embedding来表示UNK这一类后面的所有词,模型就比较困难去学习到它的语义信息。虽然我们可以设置一个比较低的门限,但是这样会导致数据集中出现很多词频低的词,产生数据稀疏问题。
作者也使用了实验证明了这个问题。即,将训练集、验证集和测试集中的所有OOV词都剔除。实验结果显示,随着剔除的OOV词数量越多,word级模型的效果就越好,而char级模型的效果越差。因此,作者的结论是:word级模型受OOV问题困扰,而char级模型不受该问题所困扰。在word级模型中,可以通过减少数据集中的OOV词数量来解决该问题。
3. 过拟合(Overfitting)
从数据稀疏问题中的讨论,我们可以得知word级模型会有更多的参数需要被学习到,因此更容易导致产生过拟合。作者使用了dropout技术来解决这个问题。但是,实验证明dropout技术不足以解决word级模型的过拟合问题。
Conclusion
在作者所做的四组实验来看,char级模型效果几乎均好于word级模型。作者将原因归结于word级模型的三点:1.数据稀疏;2.OOV词的存在;3.过拟合。
但作者的初心并不是下一个定性的结论,而是希望大家对这个问题能有更多的探讨,毕竟,我们之前在做NLP任务时,第一步就是无脑地直接分词,确实很少考虑其合理性。
方便交流学习,备注:昵称-学校(公司)-方向,进入DL&NLP交流群。
方向有很多:机器学习、深度学习,python,情感分析、意见挖掘、句法分析、机器翻译、人机对话、知识图谱、语音识别等。
记得备注呦
推荐阅读:
【ACL 2019】腾讯AI Lab解读三大前沿方向及20篇入选论文
【一分钟论文】IJCAI2019 | Self-attentive Biaffine Dependency Parsing
【一分钟论文】 NAACL2019-使用感知句法词表示的句法增强神经机器翻译
【一分钟论文】Semi-supervised Sequence Learning半监督序列学习
【一分钟论文】Deep Biaffine Attention for Neural Dependency Parsing
详解Transition-based Dependency parser基于转移的依存句法解析器
经验 | 初入NLP领域的一些小建议
学术 | 如何写一篇合格的NLP论文
干货 | 那些高产的学者都是怎样工作的?
一个简单有效的联合模型
近年来NLP在法律领域的相关研究工作
让更多的人知道你“在看”