热门标签 | HotTags
当前位置:  开发笔记 > 编程语言 > 正文

深度学习黑话

OCR:用字符识别方法将形状翻译成计算机文字的过程Matlab:商业数学软件;CUDA:CUDA™是一种由NVIDIA推

OCR:用字符识别方法将形状翻译成计算机文字的过程

Matlab:商业数学软件;

CUDA:CUDA™是一种由NVIDIA推出的通用并行计算架构,该架构使GPU能够解决复杂的计算问题

OpenCL: OpenCL是一个为异构平台编写程序的框架,此异构平台可由CPU,GPU或其他类型的处理器组成。

OpenCV:开源计算机视觉库;OpenGL:开源图形库;Caffe:是一个清晰,可读性高,快速的深度学习框架。

CNN:(深度学习)卷积神经网络(Convolutional Neural Network)CNN主要用来识别位移、缩放及其他形式扭曲不变性的二维图形。

开源库:指的是计算机行业中对所有人开发的代码库,所有人均可以使用并改进代码算法。

feature:一个数组

representation:还是一个数组

embedding:把输入映射成数组

提高泛化性:预测更准了

过拟合:训练过头了

attention:加权

adaptive:还是加权

multi-stage:发现不行,还得一步一步来

domain:我圈起来一堆样本,就管他叫一个domain

transfer:我非得在这一堆样本上训练,用在另一堆样本上

adversarial:我加了一部分就是让loss增大

robust:很稳我不会让loss变大的(但也不容易变小了)

multi-task:把几个loss加一起,完事

multi-domain:把几堆儿样本混一块训练,完事

multi-modality:把视频语音文字图像graph点云xxx混一块训练,完事

novelty: 创新点(有时只是噱头,真正涨点的可能是tricks)

异构:很不一样的


推荐阅读
  • 本文详细介绍了Java编程语言中的核心概念和常见面试问题,包括集合类、数据结构、线程处理、Java虚拟机(JVM)、HTTP协议以及Git操作等方面的内容。通过深入分析每个主题,帮助读者更好地理解Java的关键特性和最佳实践。 ... [详细]
  • 毕业设计:基于机器学习与深度学习的垃圾邮件(短信)分类算法实现
    本文详细介绍了如何使用机器学习和深度学习技术对垃圾邮件和短信进行分类。内容涵盖从数据集介绍、预处理、特征提取到模型训练与评估的完整流程,并提供了具体的代码示例和实验结果。 ... [详细]
  • 探索电路与系统的起源与发展
    本文回顾了电路与系统的发展历程,从电的早期发现到现代电子器件的应用。文章不仅涵盖了基础理论和关键发明,还探讨了这一学科对计算机、人工智能及物联网等领域的深远影响。 ... [详细]
  • 2017年人工智能领域的十大里程碑事件回顾
    随着2018年的临近,我们一同回顾过去一年中人工智能领域的重要进展。这一年,无论是政策层面的支持,还是技术上的突破,都显示了人工智能发展的迅猛势头。以下是精选的2017年人工智能领域最具影响力的事件。 ... [详细]
  • C++实现经典排序算法
    本文详细介绍了七种经典的排序算法及其性能分析。每种算法的平均、最坏和最好情况的时间复杂度、辅助空间需求以及稳定性都被列出,帮助读者全面了解这些排序方法的特点。 ... [详细]
  • 数据管理权威指南:《DAMA-DMBOK2 数据管理知识体系》
    本书提供了全面的数据管理职能、术语和最佳实践方法的标准行业解释,构建了数据管理的总体框架,为数据管理的发展奠定了坚实的理论基础。适合各类数据管理专业人士和相关领域的从业人员。 ... [详细]
  • 深入理解C++中的KMP算法:高效字符串匹配的利器
    本文详细介绍C++中实现KMP算法的方法,探讨其在字符串匹配问题上的优势。通过对比暴力匹配(BF)算法,展示KMP算法如何利用前缀表优化匹配过程,显著提升效率。 ... [详细]
  • 在金融和会计领域,准确无误地填写票据和结算凭证至关重要。这些文件不仅是支付结算和现金收付的重要依据,还直接关系到交易的安全性和准确性。本文介绍了一种使用C语言实现小写金额转换为大写金额的方法,确保数据的标准化和规范化。 ... [详细]
  • 本章将深入探讨移动 UI 设计的核心原则,帮助开发者构建简洁、高效且用户友好的界面。通过学习设计规则和用户体验优化技巧,您将能够创建出既美观又实用的移动应用。 ... [详细]
  • 机器学习中的相似度度量与模型优化
    本文探讨了机器学习中常见的相似度度量方法,包括余弦相似度、欧氏距离和马氏距离,并详细介绍了如何通过选择合适的模型复杂度和正则化来提高模型的泛化能力。此外,文章还涵盖了模型评估的各种方法和指标,以及不同分类器的工作原理和应用场景。 ... [详细]
  • 本文探讨了 C++ 中普通数组和标准库类型 vector 的初始化方法。普通数组具有固定长度,而 vector 是一种可扩展的容器,允许动态调整大小。文章详细介绍了不同初始化方式及其应用场景,并提供了代码示例以加深理解。 ... [详细]
  • 尽管使用TensorFlow和PyTorch等成熟框架可以显著降低实现递归神经网络(RNN)的门槛,但对于初学者来说,理解其底层原理至关重要。本文将引导您使用NumPy从头构建一个用于自然语言处理(NLP)的RNN模型。 ... [详细]
  • 智能车间调度研究进展
    本文综述了基于强化学习的智能车间调度策略,探讨了车间调度问题在资源有限条件下的优化方法。通过数学规划、智能算法和强化学习等手段,解决了作业车间、流水车间和加工车间中的静态与动态调度挑战。重点讨论了不同场景下的求解方法及其应用前景。 ... [详细]
  • Coursera ML 机器学习
    2019独角兽企业重金招聘Python工程师标准线性回归算法计算过程CostFunction梯度下降算法多变量回归![选择特征](https:static.oschina.n ... [详细]
  • 机器学习核心概念与技术
    本文系统梳理了机器学习的关键知识点,涵盖模型评估、正则化、线性模型、支持向量机、决策树及集成学习等内容,并深入探讨了各算法的原理和应用场景。 ... [详细]
author-avatar
暗夜风线_371
这个家伙很懒,什么也没留下!
PHP1.CN | 中国最专业的PHP中文社区 | DevBox开发工具箱 | json解析格式化 |PHP资讯 | PHP教程 | 数据库技术 | 服务器技术 | 前端开发技术 | PHP框架 | 开发工具 | 在线工具
Copyright © 1998 - 2020 PHP1.CN. All Rights Reserved | 京公网安备 11010802041100号 | 京ICP备19059560号-4 | PHP1.CN 第一PHP社区 版权所有