热门标签 | HotTags
当前位置:  开发笔记 > 编程语言 > 正文

尚硅谷大数据技术之Hadoop(入门)(新)第2章从Hadoop框架讨论大数据生态

2.5Hadoop组成(面试重点)image.png2.5.1HDFS架构概述HDFS(HadoopDistributedFileSystem)的架构概述,如图2-23所示。ima

2.5 Hadoop组成(面试重点)

《尚硅谷大数据技术之Hadoop(入门)(新)第2章 从Hadoop框架讨论大数据生态》 image.png

2.5.1 HDFS架构概述
HDFS(Hadoop Distributed File System)的架构概述,如图2-23所示。

《尚硅谷大数据技术之Hadoop(入门)(新)第2章 从Hadoop框架讨论大数据生态》 image.png

2.5.2 YARN架构概述

YARN架构概述,如图2-24所示。

《尚硅谷大数据技术之Hadoop(入门)(新)第2章 从Hadoop框架讨论大数据生态》 image.png

2.5.3 MapReduce架构概述
MapReduce将计算过程分为两个阶段:Map和Reduce,如图2-25所示
1)Map阶段并行处理输入数据
2)Reduce阶段对Map结果进行汇总

《尚硅谷大数据技术之Hadoop(入门)(新)第2章 从Hadoop框架讨论大数据生态》 image.png

2.6 大数据技术生态体系

大数据技术生态体系如图2-26所示。

《尚硅谷大数据技术之Hadoop(入门)(新)第2章 从Hadoop框架讨论大数据生态》 image.png

图中涉及的技术名词解释如下:

1)Sqoop:Sqoop是一款开源的工具,主要用于在Hadoop、Hive与传统的数据库(MySql)间进行数据的传递,可以将一个关系型数据库(例如 :MySQL,Oracle 等)中的数据导进到Hadoop的HDFS中,也可以将HDFS的数据导进到关系型数据库中。

2)Flume:Flume是Cloudera提供的一个高可用的,高可靠的,分布式的海量日志采集、聚合和传输的系统,Flume支持在日志系统中定制各类数据发送方,用于收集数据;同时,Flume提供对数据进行简单处理,并写到各种数据接受方(可定制)的能力。

3)Kafka:Kafka是一种高吞吐量的分布式发布订阅消息系统,有如下特性:

(1)通过O(1)的磁盘数据结构提供消息的持久化,这种结构对于即使数以TB的消息存储也能够保持长时间的稳定性能。

(2)高吞吐量:即使是非常普通的硬件Kafka也可以支持每秒数百万的消息。

(3)支持通过Kafka服务器和消费机集群来分区消息。
(4)支持Hadoop并行数据加载。
4)Storm:Storm用于“连续计算”,对数据流做连续查询,在计算时就将结果以流的形式输出给用户。
5)Spark:Spark是当前最流行的开源大数据内存计算框架。可以基于Hadoop上存储的大数据进行计算。
6)Oozie:Oozie是一个管理Hdoop作业(job)的工作流程调度管理系统。
7)Hbase:HBase是一个分布式的、面向列的开源数据库。HBase不同于一般的关系数据库,它是一个适合于非结构化数据存储的数据库。
8)Hive:Hive是基于Hadoop的一个数据仓库工具,可以将结构化的数据文件映射为一张数据库表,并提供简单的SQL查询功能,可以将SQL语句转换为MapReduce任务进行运行。 其优点是学习成本低,可以通过类SQL语句快速实现简单的MapReduce统计,不必开发专门的MapReduce应用,十分适合数据仓库的统计分析。
10)R语言:R是用于统计分析、绘图的语言和操作环境。R是属于GNU系统的一个自由、免费、源代码开放的软件,它是一个用于统计计算和统计制图的优秀工具。
11)Mahout:Apache Mahout是个可扩展的机器学习和数据挖掘库。
12)ZooKeeper:Zookeeper是Google的Chubby一个开源的实现。它是一个针对大型分布式系统的可靠协调系统,提供的功能包括:配置维护、名字服务、 分布式同步、组服务等。ZooKeeper的目标就是封装好复杂易出错的关键服务,将简单易用的接口和性能高效、功能稳定的系统提供给用户。
2.7 推荐系统框架图
推荐系统项目架构如图2-27所示。

《尚硅谷大数据技术之Hadoop(入门)(新)第2章 从Hadoop框架讨论大数据生态》 image.png

本教程由尚硅谷教育大数据研究院出品,如需转载请注明来源,欢迎大家关注尚硅谷公众号(atguigu)了解更多。


推荐阅读
  • 从0到1搭建大数据平台
    从0到1搭建大数据平台 ... [详细]
  • HBase在金融大数据迁移中的应用与挑战
    随着最后一台设备的下线,标志着超过10PB的HBase数据迁移项目顺利完成。目前,新的集群已在新机房稳定运行超过两个月,监控数据显示,新集群的查询响应时间显著降低,系统稳定性大幅提升。此外,数据消费的波动也变得更加平滑,整体性能得到了显著优化。 ... [详细]
  • 本文介绍如何通过整合SparkSQL与Hive来构建高效的用户画像环境,提高数据处理速度和查询效率。 ... [详细]
  • 初探Hadoop:第一章概览
    本文深入探讨了《Hadoop》第一章的内容,重点介绍了Hadoop的基本概念及其如何解决大数据处理中的关键挑战。 ... [详细]
  • 本文探讨了使用Python实现监控信息收集的方法,涵盖从基础的日志记录到复杂的系统运维解决方案,旨在帮助开发者和运维人员提升工作效率。 ... [详细]
  • 流处理中的计数挑战与解决方案
    本文探讨了在流处理中进行计数的各种技术和挑战,并基于作者在2016年圣何塞举行的Hadoop World大会上的演讲进行了深入分析。文章不仅介绍了传统批处理和Lambda架构的局限性,还详细探讨了流处理架构的优势及其在现代大数据应用中的重要作用。 ... [详细]
  • 【漫画解析】数据已删,存储空间为何未减?揭秘背后真相
    在数据迁移过程中,即使删除了原有数据,存储空间却未必会相应减少。本文通过漫画形式解析了这一现象背后的真相。具体来说,使用 `mysqldump` 命令进行数据导出时,该工具作为 MySQL 的逻辑备份工具,通过连接数据库并查询所需数据,将其转换为 SQL 语句。然而,这种操作并不会立即释放存储空间,因为数据库系统可能保留了已删除数据的碎片信息。文章进一步探讨了如何优化存储管理,以确保数据删除后能够有效回收存储空间。 ... [详细]
  • PHP中元素的计量单位是什么? ... [详细]
  • 本文由公众号【数智物语】(ID: decision_engine)发布,关注获取更多干货。文章探讨了从数据收集到清洗、建模及可视化的全过程,介绍了41款实用工具,旨在帮助数据科学家和分析师提升工作效率。 ... [详细]
  • Windows环境下Oracle数据库迁移实践
    本文详细记录了一次在Windows操作系统下将Oracle数据库的控制文件、数据文件及在线日志文件迁移至外部存储的过程,旨在为后续的集群环境部署做好准备。 ... [详细]
  • 本文介绍了Hadoop的核心组件,包括高可靠性和高吞吐量的分布式文件系统HDFS、分布式的离线并行计算框架MapReduce、作业调度与集群资源管理框架YARN以及支持其他模块的工具模块Common。 ... [详细]
  • 如何高效启动大数据应用之旅?
    在前一篇文章中,我探讨了大数据的定义及其与数据挖掘的区别。本文将重点介绍如何高效启动大数据应用项目,涵盖关键步骤和最佳实践,帮助读者快速踏上大数据之旅。 ... [详细]
  • 在搭建Hadoop集群以处理大规模数据存储和频繁读取需求的过程中,经常会遇到各种配置难题。本文总结了作者在实际部署中遇到的典型问题,并提供了详细的解决方案,帮助读者避免常见的配置陷阱。通过这些经验分享,希望读者能够更加顺利地完成Hadoop集群的搭建和配置。 ... [详细]
  • 在前一篇文章《Hadoop》系列之“踽踽独行”(二)中,我们详细探讨了云计算的核心概念。本章将重点转向物联网技术,全面解析其基本原理、应用场景及未来发展前景。通过深入分析物联网的架构和技术栈,我们将揭示其在智能城市、工业自动化和智能家居等领域的广泛应用潜力。此外,还将讨论物联网面临的挑战,如数据安全和隐私保护等问题,并展望其在未来技术融合中的重要角色。 ... [详细]
  • 构建高可用性Spark分布式集群:大数据环境下的最佳实践
    在构建高可用性的Spark分布式集群过程中,确保所有节点之间的无密码登录是至关重要的一步。通过在每个节点上生成SSH密钥对(使用 `ssh-keygen -t rsa` 命令并保持默认设置),可以实现这一目标。此外,还需将生成的公钥分发到所有节点的 `~/.ssh/authorized_keys` 文件中,以确保节点间的无缝通信。为了进一步提升集群的稳定性和性能,建议采用负载均衡和故障恢复机制,并定期进行系统监控和维护。 ... [详细]
author-avatar
宋雨甄_938
这个家伙很懒,什么也没留下!
PHP1.CN | 中国最专业的PHP中文社区 | DevBox开发工具箱 | json解析格式化 |PHP资讯 | PHP教程 | 数据库技术 | 服务器技术 | 前端开发技术 | PHP框架 | 开发工具 | 在线工具
Copyright © 1998 - 2020 PHP1.CN. All Rights Reserved | 京公网安备 11010802041100号 | 京ICP备19059560号-4 | PHP1.CN 第一PHP社区 版权所有