热门标签 | HotTags
当前位置:  开发笔记 > 编程语言 > 正文

Seurat包图文详解|单细胞转录组(scRNAseq)分析02

文章目录一、创建Seurat对象二、标准预处理流程1.基因质控指标来筛选细胞2.归一化数据3.识别高异质性特征4.缩放数据5.线性维度约化PCAVizDimLoadingsDimP

文章目录

        • 一、创建 Seurat 对象
        • 二、标准预处理流程
          • 1.基因质控指标来筛选细胞
          • 2.归一化数据
          • 3.识别高异质性特征
          • 4.缩放数据
          • 5.线性维度约化 PCA
            • VizDimLoadings
            • DimPlot
            • DimHeatmap
          • 5.确定数据集的维度
            • 方法一:JackStrawPlot
            • 方法二:ElbowPlot
          • 6.聚类细胞
          • 7.非线性维度约化(UMAP/TSNE)
          • 8.发现差异表达特征(cluster bioers)
          • 9.识别细胞类型


一、创建 Seurat 对象

使用的示例数据集来自10X Genome 测序的 Peripheral Blood Mononuclear Cells (PBMC)。

下载链接:https://s3-us-west-2.amazonaws.com/10x.files/samples/cell/pbmc3k/pbmc3k_filtered_gene_bc_matrices.tar.gz

library(dplyr)
library(Seurat)# Load the PBMC dataset
pbmc.data <- Read10X(data.dir &#61; "../data/pbmc3k/filtered_gene_bc_matrices/hg19/")
# Initialize the Seurat object with the raw (non-normalized data).
pbmc <- CreateSeuratObject(counts &#61; pbmc.data, project &#61; "pbmc3k", min.cells &#61; 3, min.features &#61; 200)
pbmc

二、标准预处理流程

流程包括&#xff1a;

  • 基于质控指标&#xff08;QC metric&#xff09;来筛选细胞
  • 数据归一化和缩放
  • 高异质性基因检测

1.基因质控指标来筛选细胞

质控指标&#xff1a;

  • 每个细胞中检测到的基因数

    • 低质量的细胞和空油滴&#xff08;droplet&#xff09;只有少量基因
    • 两个及以上的细胞会有异常的高基因数
  • 每个细胞中的UMI总数&#xff08;与上类似&#xff09;

  • 线粒体基因组的reads比例

    • 低质量或死细胞会有大百分比的线粒体基因组

    • 使用PercentageFeatureSet函数来计数线粒体质控指标

    • MT-是线粒体基因

# 计算线粒体read的百分比
pbmc[["percent.mt"]] <- PercentageFeatureSet(pbmc, pattern &#61; "^MT-")
VlnPlot(pbmc, features &#61; c("nFeature_RNA", "nCount_RNA", "percent.mt"), ncol &#61; 3)
# 显示前5个细胞的质控指标
head(pbmc&#64;meta.data, 5)

通过上图&#xff0c;过滤标准设定为&#xff1a;

  • 过滤UMI数大于2500&#xff0c;小于200的细胞
  • 过滤线粒体百分比大于5%的细胞

查看特征与特征间的相关性

plot1 <- FeatureScatter(pbmc, feature1 &#61; "nCount_RNA", feature2 &#61; "percent.mt")

plot2 <- FeatureScatter(pbmc, feature1 &#61; "nCount_RNA", feature2 &#61; "nFeature_RNA")

过滤

pbmc <- subset(pbmc, subset &#61; nFeature_RNA > 200 & nFeature_RNA <2500 & percent.mt <5)

看看相关性

p1 <- FeatureScatter(pbmc, feature1 &#61; "nCount_RNA", feature2 &#61; "percent.mt")
p2 <- FeatureScatter(pbmc, feature1 &#61; "nCount_RNA", feature2 &#61; "nFeature_RNA")
CombinePlots(plots &#61; list(p1, p2))

2.归一化数据

pbmc <- NormalizeData(pbmc, normalization.method &#61; "LogNormalize", scale.factor &#61; 10000)

LogNormalize that normalizes the feature expression measurements for each cell by the total expression, multiplies this by a scale factor (10,000 by default), and log-transforms the result. Normalized values are stored in pbmc[["RNA"]]&#64;data.

上述代码可以替换为&#xff1a;pbmc <- NormalizeData(pbmc)


3.识别高异质性特征

高异质性&#xff1a;这些特征在有的细胞中高表达&#xff0c;有的细胞中低表达。在下游分析中关注这些基因有助于找到单细胞数据集中的生物信号[https://www.nature.com/articles/nmeth.2645 ]

# 识别前2000个特征
pbmc <- FindVariableFeatures(pbmc, selection.method &#61; "vst", nfeatures &#61; 2000)
# 识别前10的高异质性基因
top10 <- head(VariableFeatures(pbmc), 10)# 绘图看看
plot1 <- VariableFeaturePlot(pbmc)
plot2 <- LabelPoints(plot &#61; plot1, points &#61; top10, repel &#61; TRUE)
CombinePlots(plots &#61; list(plot1, plot2))

4.缩放数据

这是在PCA等降维操作前的一个步骤&#xff0c;ScaleData函数&#xff1a;

  • 转换每个基因的表达值&#xff0c;使每个细胞的平均表达值为0
  • 转换每个基因的表达值&#xff0c;使细胞间方差为1
    • 此步骤在下游分析中具有相同的权重&#xff0c;因此高表达的基因不会占主导地位

all.genes <- rownames(pbmc)
pbmc <- ScaleData(pbmc, features &#61; all.genes)
head(pbmc[["RNA"]]&#64;scale.data,5)

5.线性维度约化 PCA

pbmc <- RunPCA(pbmc, features &#61; VariableFeatures(object &#61; pbmc))

可视化细胞与特征间的PCA有三种方式&#xff1a;

VizDimLoadings

print(pbmc[["pca"]], dims &#61; 1:5, nfeatures &#61; 5)
# 绘图
VizDimLoadings(pbmc, dims &#61; 1:2, reduction &#61; "pca")

DimPlot

DimPlot(pbmc, reduction &#61; "pca")

DimHeatmap

DimHeatmap(pbmc, dims &#61; 1, cells &#61; 500, balanced &#61; TRUE)

主要用来查看数据集中的异质性的主要来源&#xff0c;并且可以确定哪些PC维度可以用于下一步的下游分析。

细胞和特征根据PCA分数来排序

DimHeatmap(pbmc, dims &#61; 1:15, cells &#61; 500, balanced &#61; TRUE)

5.确定数据集的维度

为了克服在单细胞数据中在单个特征中的技术噪音&#xff0c;Seurat 聚类细胞是基于PCA分数的。每个PC代表着一个‘元特征’&#xff08;带有跨相关特征集的信息&#xff09;。因此&#xff0c;最主要的主成分代表了压缩的数据集。问题是要选多少PC呢&#xff1f;

方法一&#xff1a;JackStrawPlot

作者受JackStraw procedure 启发。随机置换数据的一部分子集&#xff08;默认1%&#xff09;再运行PCA&#xff0c;构建了一个’null distribution’的特征分数&#xff0c;重复这一步。最终会识别出低P-value特征的显著PCs

pbmc <- JackStraw(pbmc, num.replicate &#61; 100)
pbmc <- ScoreJackStraw(pbmc, dims &#61; 1:20)
# 绘图看看
JackStrawPlot(pbmc, dims &#61; 1:15)

In this case it appears that there is a sharp drop-off in significance after the first 10-12 PCs

在上图中展示出在前10到12台PC之后&#xff0c;重要性显著下降

方法二&#xff1a;ElbowPlot

“ElbowPlot”&#xff1a;基于每个分量所解释的方差百分比对主要成分进行排名。 在此示例中&#xff0c;我们可以在PC9-10周围观察到“elbow ”&#xff0c;这表明大多数真实信号是在前10台PC中捕获的。

ElbowPlot(pbmc)

为了识别出数据的真实维度&#xff0c;有三种方法&#xff1a;

  • 用更加受监督的方法来确定PCs的异质性&#xff0c;比如可以结合GSEA来分析&#xff08; The first is more supervised, exploring PCs to determine relevant sources of heterogeneity, and could be used in conjunction with GSEA for example &#xff09;
  • The second implements a statistical test based on a random null model, but is time-consuming for large datasets, and may not return a clear PC cutoff.
  • The third is a heuristic that is commonly used, and can be calculated instantly.

在这个例子中三种方法均产生了相似的结果&#xff0c;以PC 7-12作为阈值。

这个例子中&#xff0c;作者选择10&#xff0c;但是实际过程中还要考虑&#xff1a;

  • 树突状细胞和NK细胞可能在PCs12和13中识别&#xff0c;这可能定义了罕见的免疫亚群&#xff08;比如&#xff0c;MZB1是浆细胞样的er&#xff09;。但是除非有一定的知识量&#xff0c;否则很难从背景噪音中发现。
  • 用户可以选择不同的PCs再进行下游分析&#xff0c;比如选10&#xff0c;15&#xff0c;50等。结果常常有很多的不同。
  • 建议在选择该参数时候&#xff0c;尽量偏高一点。如果仅仅使用5PCs会对下游分析产生不利影响

6.聚类细胞

pbmc <- FindNeighbors(pbmc, dims &#61; 1:10)
pbmc <- FindClusters(pbmc, resolution &#61; 0.5)
# 查看前5聚类
head(Idents(pbmc), 5)

7.非线性维度约化&#xff08;UMAP/TSNE&#xff09;

# 使用UMAP聚类
pbmc <- RunUMAP(pbmc, dims &#61; 1:10)
DimPlot(pbmc, reduction &#61; "umap")
# 显示在聚类标签
DimPlot(pbmc, reduction &#61; "umap", label &#61; TRUE)

# 使用TSNE聚类
pbmc <- RunTSNE(pbmc, dims &#61; 1:10)
DimPlot(pbmc, reduction &#61; "tsne")
# 显示在聚类标签
DimPlot(pbmc, reduction &#61; "tsne", label &#61; TRUE)

8.发现差异表达特征&#xff08;cluster bioers&#xff09;

# 发现聚类一的所有biomarkers
cluster1.markers <- FindMarkers(pbmc, ident.1 &#61; 1, min.pct &#61; 0.25)
head(cluster1.markers, n &#61; 5)# 查找将聚类5与聚类0和3区分的所有标记
cluster5.markers <- FindMarkers(pbmc, ident.1 &#61; 5, ident.2 &#61; c(0, 3), min.pct &#61; 0.25)
head(cluster5.markers, n &#61; 5)# 与所有其他细胞相比&#xff0c;找到每个簇的标记&#xff0c;仅报告阳性细胞
pbmc.markers <- FindAllMarkers(pbmc, only.pos &#61; TRUE, min.pct &#61; 0.25, logfc.threshold &#61; 0.25)
pbmc.markers %>% group_by(cluster) %>% top_n(n &#61; 2, wt &#61; avg_logFC)
cluster1.markers <- FindMarkers(pbmc, ident.1 &#61; 0, logfc.threshold &#61; 0.25, test.use &#61; "roc", only.pos &#61; TRUE)

可视化

# 绘图看看
VlnPlot(pbmc, features &#61; c("MS4A1", "CD79A"))

# 使用原始count绘制
VlnPlot(pbmc, features &#61; c("NKG7", "PF4"), slot &#61; "counts", log &#61; TRUE)

FeaturePlot(pbmc, features &#61; c("MS4A1", "GNLY", "CD3E", "CD14", "FCER1A", "FCGR3A", "LYZ", "PPBP", "CD8A"))

mark

RidgePlot(pbmc, features &#61; c("MS4A1", "CD79A"))

DotPlot(pbmc, features &#61; c("MS4A1", "CD79A"))

top10 <- pbmc.ers %>% group_by(cluster) %>% top_n(n &#61; 10, wt &#61; avg_logFC)
DoHeatmap(pbmc, features &#61; top10$gene) &#43; NoLegend()

9.识别细胞类型

在这个数据集的情况下&#xff0c;我们可以使用 canonical markers 轻松地将无偏聚类与已知的细胞类型相匹配。

Cluster IDMarkersCell Type
0IL7R, CCR7Naive CD4&#43; T
1IL7R, S100A4Memory CD4&#43;
2CD14, LYZCD14&#43; Mono
3MS4A1B
4CD8ACD8&#43; T
5FCGR3A, MS4A7FCGR3A&#43; Mono
6GNLY, NKG7NK
7FCER1A, CST3DC
8PPBPPlatelet

new.cluster.ids <- c("Naive CD4 T", "Memory CD4 T", "CD14&#43; Mono", "B", "CD8 T", "FCGR3A&#43; Mono", "NK", "DC", "Platelet")
names(new.cluster.ids) <- levels(pbmc)
pbmc <- RenameIdents(pbmc, new.cluster.ids)
DimPlot(pbmc, reduction &#61; "umap", label &#61; TRUE, pt.size &#61; 0.5) &#43; NoLegend()

mark


推荐阅读
author-avatar
你一句话就逼我撤退
这个家伙很懒,什么也没留下!
PHP1.CN | 中国最专业的PHP中文社区 | DevBox开发工具箱 | json解析格式化 |PHP资讯 | PHP教程 | 数据库技术 | 服务器技术 | 前端开发技术 | PHP框架 | 开发工具 | 在线工具
Copyright © 1998 - 2020 PHP1.CN. All Rights Reserved | 京公网安备 11010802041100号 | 京ICP备19059560号-4 | PHP1.CN 第一PHP社区 版权所有