热门标签 | HotTags
当前位置:  开发笔记 > 后端 > 正文

SVM另讲

支持向量机(supportvectormachine)是一种分类算法,通过寻求结构化风险最小来提高学习机泛化能力,实现经验风险和置信范围的最小化

支持向量机(support vector machine)是一种分类算法,通过寻求结构化风险最小来提高学习机泛化能力,实现经验风险和置信范围的最小化,从而达到在统计样本量较少的情况下,亦能获得良好统计规律的目的。通俗来讲,它是一种二类分类模型,其基本模型定义为特征空间上的间隔最大的线性分类器,即支持向量机的学习策略便是间隔最大化,最终可转化为一个凸二次规划问题的求解。

具体原理:

1. 在n维空间中找到一个分类超平面,将空间上的点分类。如下图是线性分类的例子。

2. 一般而言,一个点距离超平面的远近可以表示为分类预测的确信或准确程度。SVM就是要最大化这个间隔值。而在虚线上的点便叫做支持向量Supprot Verctor。

3. 线性不可分映射到高维空间,可能会导致维度大小高到可怕的(19维乃至无穷维的例子),导致计算复杂。核函数的价值在于它虽然也是讲特征进行从低维到高维的转换,但核函数绝就绝在它事先在低维上进行计算,而将实质上的分类效果表现在了高维上,也就如上文所说的避免了直接在高维空间中的复杂计算。

4.使用松弛变量处理数据噪音

id="iframe_0.7918411044425673" scrolling="no">

SVM的优点:

1. SVM学习问题可以表示为凸优化问题,因此可以利用已知的有效算法发现目标函数的全局最小值。而其他分类方法(如基于规则的分类器和人工神经网络)都采用一种基于贪心学习的策略来搜索假设空间,这种方法一般只能获得局部最优解。

2. 假设现在你是一个农场主,圈养了一批羊群,但为预防狼群袭击羊群,你需要搭建一个篱笆来把羊群围起来。但是篱笆应该建在哪里呢?你很可能需要依据牛群和狼群的位置建立一个“分类器”,比较下图这几种不同的分类器,我们可以看到SVM完成了一个很完美的解决方案。

摘抄自http://blog.csdn.net/v_july_v/article/details/7624837。


推荐阅读
  • 大数据时代的机器学习:人工特征工程与线性模型的局限
    本文探讨了在大数据背景下,人工特征工程与线性模型的应用及其局限性。随着数据量的激增和技术的进步,传统的特征工程方法面临挑战,文章提出了未来发展的可能方向。 ... [详细]
  • 毕业设计:基于机器学习与深度学习的垃圾邮件(短信)分类算法实现
    本文详细介绍了如何使用机器学习和深度学习技术对垃圾邮件和短信进行分类。内容涵盖从数据集介绍、预处理、特征提取到模型训练与评估的完整流程,并提供了具体的代码示例和实验结果。 ... [详细]
  • 机器学习算法:SVM(支持向量机)
    SVM算法(SupportVectorMachine,支持向量机)的核心思想有2点:1、如果数据线性可分,那么基于最大间隔的方式来确定超平面,以确保全局最优, ... [详细]
  • 在机器学习领域,深入探讨了概率论与数理统计的基础知识,特别是这些理论在数据挖掘中的应用。文章重点分析了偏差(Bias)与方差(Variance)之间的平衡问题,强调了方差反映了不同训练模型之间的差异,例如在K折交叉验证中,不同模型之间的性能差异显著。此外,还讨论了如何通过优化模型选择和参数调整来有效控制这一平衡,以提高模型的泛化能力。 ... [详细]
  •     目标检测是计算机视觉一个非常重要的子任务。目标检测需要发现并准确定位自然图片中的物体。在2012年之前,目标检测主要基于手工设计的特征以及传统分类器。2012年以后,出现了 ... [详细]
  • 优化ListView性能
    本文深入探讨了如何通过多种技术手段优化ListView的性能,包括视图复用、ViewHolder模式、分批加载数据、图片优化及内存管理等。这些方法能够显著提升应用的响应速度和用户体验。 ... [详细]
  • 本文详细介绍了Java编程语言中的核心概念和常见面试问题,包括集合类、数据结构、线程处理、Java虚拟机(JVM)、HTTP协议以及Git操作等方面的内容。通过深入分析每个主题,帮助读者更好地理解Java的关键特性和最佳实践。 ... [详细]
  • 本文深入探讨了Linux系统中网卡绑定(bonding)的七种工作模式。网卡绑定技术通过将多个物理网卡组合成一个逻辑网卡,实现网络冗余、带宽聚合和负载均衡,在生产环境中广泛应用。文章详细介绍了每种模式的特点、适用场景及配置方法。 ... [详细]
  • 机器学习中的相似度度量与模型优化
    本文探讨了机器学习中常见的相似度度量方法,包括余弦相似度、欧氏距离和马氏距离,并详细介绍了如何通过选择合适的模型复杂度和正则化来提高模型的泛化能力。此外,文章还涵盖了模型评估的各种方法和指标,以及不同分类器的工作原理和应用场景。 ... [详细]
  • 使用Vultr云服务器和Namesilo域名搭建个人网站
    本文详细介绍了如何通过Vultr云服务器和Namesilo域名搭建一个功能齐全的个人网站,包括购买、配置服务器以及绑定域名的具体步骤。文章还提供了详细的命令行操作指南,帮助读者顺利完成建站过程。 ... [详细]
  • 高效解决应用崩溃问题!友盟新版错误分析工具全面升级
    友盟推出的最新版错误分析工具,专为移动开发者设计,提供强大的Crash收集与分析功能。该工具能够实时监控App运行状态,快速发现并修复错误,显著提升应用的稳定性和用户体验。 ... [详细]
  • 本文探讨了互联网服务提供商(ISP)如何可能篡改或插入用户请求的数据流,并提供了有效的技术手段来防止此类劫持行为,确保网络环境的安全与纯净。 ... [详细]
  • 本文深入解析了HTML框架集(FRAMESET)的使用方法及其应用场景。首先介绍了几个关键概念,如如何通过FRAMESET标签将主视图划分为多个独立的区域,每个区域可以加载不同的HTML文件。此外,还详细探讨了FRAMESET在实际开发中的优缺点,并提供了具体的实例代码,帮助开发者更好地理解和应用这一技术。 ... [详细]
  • 在使用 iframe 嵌入外部页面时,经常会遇到页面加载不同步的问题。当嵌入的页面响应较慢时,这种异步加载会导致用户体验不佳。本文介绍了如何通过监听 iframe 加载完成的事件来解决这一问题,并提出了针对双滚动条问题的有效解决方案,以提升整体的用户体验和页面加载效率。 ... [详细]
  • 整合百度UEditor编辑器于ASP后端的实现步骤与技巧
    随着微软停止对XP系统的支持,公司已全面升级至Windows 7。早期网站创建时使用的编辑器仅兼容IE6浏览器,而如今系统更新后,原有的编辑器已无法满足新环境的需求。本文详细介绍了如何将百度UEditor编辑器整合到ASP后端,包括实现步骤和实用技巧,确保网站在新系统下仍能高效运行并提供良好的用户体验。 ... [详细]
author-avatar
帖帧
这个家伙很懒,什么也没留下!
PHP1.CN | 中国最专业的PHP中文社区 | DevBox开发工具箱 | json解析格式化 |PHP资讯 | PHP教程 | 数据库技术 | 服务器技术 | 前端开发技术 | PHP框架 | 开发工具 | 在线工具
Copyright © 1998 - 2020 PHP1.CN. All Rights Reserved | 京公网安备 11010802041100号 | 京ICP备19059560号-4 | PHP1.CN 第一PHP社区 版权所有