热门标签 | HotTags
当前位置:  开发笔记 > 前端 > 正文

入门视频采集与处理

做视频采集与处理,自然少不了要学会分析YUV数据。因为从采集的角度来说,一般的视频采集芯片输出的码流一般都是YUV数据流的形式,而从视频处
做视频采集与处理,自然少不了要学会分析YUV数据。因为从采集的角度来说,一般的视频采集芯片输出的码流一般都是YUV数据流的形式,而从视频处理(例如H.264、MPEG视频编解码)的角度来说,也是在原始YUV码流进行编码和解析,所以,了解如何分析YUV数据流对于做视频领域的人而言,至关重要。本文就是根据我的学习和了解,简单地介绍如何分析YUV数据流。

    YUV,分为三个分量,“Y”表示明亮度(Luminance或Luma),也就是灰度值;而“U”和“V” 表示的则是色度(Chrominance或Chroma),作用是描述影像色彩及饱和度,用于指定像素的颜色。

    与我们熟知的RGB类似,YUV也是一种颜色编码方法,主要用于电视系统以及模拟视频领域,它将亮度信息(Y)与色彩信息(UV)分离,没有UV信息一样可以显示完整的图像,只不过是黑白的,这样的设计很好地解决了彩色电视机与黑白电视的兼容问题。并且,YUV不像RGB那样要求三个独立的视频信号同时传输,所以用YUV方式传送占用极少的频宽。

    好了,言归正传,谈谈如何分析YUV码流吧。YUV码流有多种不同的格式,要分析YUV码流,就必须搞清楚你面对的到底是哪一种格式,并且必须搞清楚这种格式的YUV采样和分布情况。下面我将介绍几种常用的YUV码流格式,供大家参考。

1.  采样方式  

    YUV码流的存储格式其实与其采样的方式密切相关,主流的采样方式有三种,YUV4:4:4,YUV4:2:2,YUV4:2:0,关于其详细原理,可以通过网上其它文章了解,这里我想强调的是如何根据其采样格式来从码流中还原每个像素点的YUV值,因为只有正确地还原了每个像素点的YUV值,才能通过YUV与RGB的转换公式提取出每个像素点的RGB值,然后显示出来。

    用三个图来直观地表示采集的方式吧,以黑点表示采样该像素点的Y分量,以空心圆圈表示采用该像素点的UV分量。

     

    先记住下面这段话,以后提取每个像素的YUV分量会用到。

  1. YUV 4:4:4采样,每一个Y对应一组UV分量。
  2. YUV 4:2:2采样,每两个Y共用一组UV分量。
  3. YUV 4:2:0采样,每四个Y共用一组UV分量。

2.  存储方式

    下面我用图的形式给出常见的YUV码流的存储方式,并在存储方式后面附有取样每个像素点的YUV数据的方法,其中,Cb、Cr的含义等同于U、V。

(1) YUVY 格式 (属于YUV422)

    YUYV为YUV422采样的存储格式中的一种,相邻的两个Y共用其相邻的两个Cb、Cr,分析,对于像素点Y'00、Y'01 而言,其Cb、Cr的值均为 Cb00、Cr00,其他的像素点的YUV取值依次类推。

(2) UYVY 格式 (属于YUV422)

    UYVY格式也是YUV422采样的存储格式中的一种,只不过与YUYV不同的是UV的排列顺序不一样而已,还原其每个像素点的YUV值的方法与上面一样。

(3) YUV422P(属于YUV422)

    YUV422P也属于YUV422的一种,它是一种Plane模式,即打包模式,并不是将YUV数据交错存储,而是先存放所有的Y分量,然后存储所有的U(Cb)分量,最后存储所有的V(Cr)分量,如上图所示。其每一个像素点的YUV值提取方法也是遵循YUV422格式的最基本提取方法,即两个Y共用一个UV。比如,对于像素点Y'00、Y'01 而言,其Cb、Cr的值均为 Cb00、Cr00。

(4)YV12,YU12格式(属于YUV420)

    YU12和YV12属于YUV420格式,也是一种Plane模式,将Y、U、V分量分别打包,依次存储。其每一个像素点的YUV数据提取遵循YUV420格式的提取方式,即4个Y分量共用一组UV。注意,上图中,Y'00、Y'01、Y'10、Y'11共用Cr00、Cb00,其他依次类推。

(5)NV12、NV21(属于YUV420)

    NV12和NV21属于YUV420格式,是一种two-plane模式,即Y和UV分为两个Plane,但是UV(CbCr)为交错存储,而不是分为三个plane。其提取方式与上一种类似,即Y'00、Y'01、Y'10、Y'11共用Cr00、Cb00

3.  总结

    几种常见的YUV码流格式就简单地列在上面了,大家在处理YUV码流前,先了解清楚自己的码流到底属于哪一种,然后对应进行处理。

    最后,再回答一个疑问,即分析清楚YUV码流格式了,我们可以做什么?最常用的一点就是,提取出所有的Y分量,然后利用vc或者matlab把你采集的图像的灰度值(Y分量)显示处理,这样你就可以很快地知道你采集的图像是否有问题了。后面我将继续写一些文章讲述如何提取、转换、显示这些YUV原始码流,有兴趣可以继续关注,欢迎留言讨论。

转:https://www.cnblogs.com/armlinux/archive/2012/02/22/2396761.html



推荐阅读
  • DNN Community 和 Professional 版本的主要差异
    本文详细解析了 DotNetNuke (DNN) 的两种主要版本:Community 和 Professional。通过对比两者的功能和附加组件,帮助用户选择最适合其需求的版本。 ... [详细]
  • 基于KVM的SRIOV直通配置及性能测试
    SRIOV介绍、VF直通配置,以及包转发率性能测试小慢哥的原创文章,欢迎转载目录?1.SRIOV介绍?2.环境说明?3.开启SRIOV?4.生成VF?5.VF ... [详细]
  • 深入探讨CPU虚拟化与KVM内存管理
    本文详细介绍了现代服务器架构中的CPU虚拟化技术,包括SMP、NUMA和MPP三种多处理器结构,并深入探讨了KVM的内存虚拟化机制。通过对比不同架构的特点和应用场景,帮助读者理解如何选择最适合的架构以优化性能。 ... [详细]
  • 在Linux系统中配置并启动ActiveMQ
    本文详细介绍了如何在Linux环境中安装和配置ActiveMQ,包括端口开放及防火墙设置。通过本文,您可以掌握完整的ActiveMQ部署流程,确保其在网络环境中正常运行。 ... [详细]
  • 在Ubuntu 16.04 LTS上配置Qt Creator开发环境
    本文详细介绍了如何在Ubuntu 16.04 LTS系统中安装和配置Qt Creator,涵盖了从下载到安装的全过程,并提供了常见问题的解决方案。 ... [详细]
  • XNA 3.0 游戏编程:从 XML 文件加载数据
    本文介绍如何在 XNA 3.0 游戏项目中从 XML 文件加载数据。我们将探讨如何将 XML 数据序列化为二进制文件,并通过内容管道加载到游戏中。此外,还会涉及自定义类型读取器和写入器的实现。 ... [详细]
  • UNP 第9章:主机名与地址转换
    本章探讨了用于在主机名和数值地址之间进行转换的函数,如gethostbyname和gethostbyaddr。此外,还介绍了getservbyname和getservbyport函数,用于在服务器名和端口号之间进行转换。 ... [详细]
  • 本文详细介绍了如何使用ActionScript 3.0 (AS3) 连接并操作MySQL数据库。通过具体的代码示例和步骤说明,帮助开发者理解并实现这一过程。 ... [详细]
  • 使用Vultr云服务器和Namesilo域名搭建个人网站
    本文详细介绍了如何通过Vultr云服务器和Namesilo域名搭建一个功能齐全的个人网站,包括购买、配置服务器以及绑定域名的具体步骤。文章还提供了详细的命令行操作指南,帮助读者顺利完成建站过程。 ... [详细]
  • Linux 基础命令详解
    本文介绍了在 Linux 系统中常见的命令及其用法。当用户登录系统后,默认提示符会显示为 [root@localhost ~]# 或 [user@localhost ~]$,其中 # 表示当前用户为 root,$ 表示普通用户。我们将深入探讨一些常用的 Linux 命令,帮助初学者更好地理解和使用这些工具。 ... [详细]
  • 在即将迎来26岁生日之际,作者的人生陷入了低谷。经过近三年的硕士学习后,最终决定退学,并且面临没有工作经验的困境。尽管如此,作者依然坚定地选择为自己的人生负责。 ... [详细]
  • 使用Python在SAE上开发新浪微博应用的初步探索
    最近重新审视了新浪云平台(SAE)提供的服务,发现其已支持Python开发。本文将详细介绍如何利用Django框架构建一个简单的新浪微博应用,并分享开发过程中的关键步骤。 ... [详细]
  • 本文详细记录了在银河麒麟操作系统和龙芯架构上使用 Qt 5.15.2 进行项目打包时遇到的问题及解决方案,特别关注于 linuxdeployqt 工具的应用。 ... [详细]
  • 本题探讨如何通过最大流算法解决农场排水系统的设计问题。题目要求计算从水源点到汇合点的最大水流速率,使用经典的EK(Edmonds-Karp)和Dinic算法进行求解。 ... [详细]
  • 尽管深度学习带来了广泛的应用前景,其训练通常需要强大的计算资源。然而,并非所有开发者都能负担得起高性能服务器或专用硬件。本文探讨了如何在有限的硬件条件下(如ARM CPU)高效运行深度神经网络,特别是通过选择合适的工具和框架来加速模型推理。 ... [详细]
author-avatar
北京家圆医院999
这个家伙很懒,什么也没留下!
PHP1.CN | 中国最专业的PHP中文社区 | DevBox开发工具箱 | json解析格式化 |PHP资讯 | PHP教程 | 数据库技术 | 服务器技术 | 前端开发技术 | PHP框架 | 开发工具 | 在线工具
Copyright © 1998 - 2020 PHP1.CN. All Rights Reserved | 京公网安备 11010802041100号 | 京ICP备19059560号-4 | PHP1.CN 第一PHP社区 版权所有